Your browser doesn't support javascript.
loading
BMX deletion mitigates neuroinflammation induced by retinal ischemia/reperfusion through modulation of the AKT/ERK/STAT3 signaling cascade.
Huang, Guangyi; Zhang, Shaoyang; Liao, Jing; Qin, Yuanjun; Hong, Yiyi; Chen, Qi; Lin, Yunru; Li, Yue; Lan, Lin; Hu, Wen; Huang, Kongqian; Tang, Fen; Tang, Ningning; Jiang, Li; Shen, Chaolan; Cui, Ling; Zhong, Haibin; Li, Min; Lu, Peng; Shu, Qinmeng; Wei, Yantao; Xu, Fan.
Afiliación
  • Huang G; Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Di
  • Zhang S; Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Di
  • Liao J; Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Di
  • Qin Y; Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Di
  • Hong Y; Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Di
  • Chen Q; Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Di
  • Lin Y; Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Di
  • Li Y; Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Di
  • Lan L; Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Di
  • Hu W; Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Di
  • Huang K; Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Di
  • Tang F; Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Di
  • Tang N; Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Di
  • Jiang L; Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Di
  • Shen C; Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Di
  • Cui L; Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Di
  • Zhong H; Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Di
  • Li M; Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Di
  • Lu P; Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Di
  • Shu Q; Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, National Health Comm
  • Wei Y; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 7 Jinsui Road, Guangzhou, 510060, China.
  • Xu F; Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Di
Heliyon ; 10(5): e27114, 2024 Mar 15.
Article en En | MEDLINE | ID: mdl-38434304
ABSTRACT

Aims:

Retinal ischemia/reperfusion (I/R) injury is implicated in the etiology of various ocular disorders. Prior research has demonstrated that bone marrow tyrosine kinase on chromosome X (BMX) contributes to the advancement of ischemic disease and inflammatory reactions. Consequently, the current investigation aims to evaluate BMX's impact on retinal I/R injury and clarify its implied mechanism of action. Main

methods:

This study utilized male and female systemic BMX knockout (BMX-/-) mice to conduct experiments. The utilization of Western blot assay and immunofluorescence labeling techniques was employed to investigate variations in the expression of protein and tissue localization. Histomorphological changes were observed through H&E staining and SD-OCT examination. Visual function changes were assessed through electrophysiological experiments. Furthermore, apoptosis in the retina was identified using the TUNEL assay, as well as the ELISA technique, which has been utilized to determine the inflammatory factors level. Key

findings:

Our investigation results revealed that the knockdown of BMX did not yield a significant effect on mouse retina. In mice, BMX knockdown mitigated the negative impact of I/R injury on retinal tissue structure and visual function. BMX knockdown effectively reduced apoptosis, suppressed inflammatory responses, and decreased inflammatory factors subsequent to I/R injury. The outcomes of the current investigation revealed that BMX knockdown partially protected the retina through downregulating phosphorylation of AKT/ERK/STAT3 pathway.

Significance:

Our investigation showed that BMX-/- reduces AKT, ERK, and STAT3 phosphorylation, reducing apoptosis and inflammation. Thus, this strategy protected the retina from structural and functional damage after I/R injury.
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Heliyon Año: 2024 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Heliyon Año: 2024 Tipo del documento: Article