Your browser doesn't support javascript.
loading
Exploring the frontiers of condensed-phase chemistry with a general reactive machine learning potential.
Zhang, Shuhao; Makos, Malgorzata Z; Jadrich, Ryan B; Kraka, Elfi; Barros, Kipton; Nebgen, Benjamin T; Tretiak, Sergei; Isayev, Olexandr; Lubbers, Nicholas; Messerly, Richard A; Smith, Justin S.
Afiliación
  • Zhang S; Department of Chemistry, Mellon College of Science, Carnegie Mellon University, Pittsburgh, PA, USA.
  • Makos MZ; Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA.
  • Jadrich RB; Computational and Theoretical Chemistry Group, Department of Chemistry, Southern Methodist University, Dallas, TX, USA.
  • Kraka E; Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA.
  • Barros K; Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA.
  • Nebgen BT; Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, USA.
  • Tretiak S; Computational and Theoretical Chemistry Group, Department of Chemistry, Southern Methodist University, Dallas, TX, USA.
  • Isayev O; Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA.
  • Lubbers N; Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, USA.
  • Messerly RA; Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA.
  • Smith JS; Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA.
Nat Chem ; 16(5): 727-734, 2024 May.
Article en En | MEDLINE | ID: mdl-38454071
ABSTRACT
Atomistic simulation has a broad range of applications from drug design to materials discovery. Machine learning interatomic potentials (MLIPs) have become an efficient alternative to computationally expensive ab initio simulations. For this reason, chemistry and materials science would greatly benefit from a general reactive MLIP, that is, an MLIP that is applicable to a broad range of reactive chemistry without the need for refitting. Here we develop a general reactive MLIP (ANI-1xnr) through automated sampling of condensed-phase reactions. ANI-1xnr is then applied to study five distinct systems carbon solid-phase nucleation, graphene ring formation from acetylene, biofuel additives, combustion of methane and the spontaneous formation of glycine from early earth small molecules. In all studies, ANI-1xnr closely matches experiment (when available) and/or previous studies using traditional model chemistry methods. As such, ANI-1xnr proves to be a highly general reactive MLIP for C, H, N and O elements in the condensed phase, enabling high-throughput in silico reactive chemistry experimentation.

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Nat Chem Asunto de la revista: QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Nat Chem Asunto de la revista: QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos