Potentiation of Brain Bioavailability Using Thermoreversible Cubosomal Formulation.
Mol Pharm
; 21(5): 2534-2543, 2024 May 06.
Article
en En
| MEDLINE
| ID: mdl-38547474
ABSTRACT
The aim of the present study was to develop and evaluate intranasal formulations of the thermoreversible fluoxetine cubosomal in situ gel. This gel was intended for permeation and bioavailability enhancement to target the brain effectively by bypassing the blood-brain barrier (BBB). Fluoxetine-loaded cubosomes were prepared by the homogenization method followed by the cold method approach to develop in situ gel. Fluoxetine-loaded cubosomes displayed a higher encapsulation efficiency (82.60 ± 1.25%) than fluoxetine. This might be due to the solubilizing activity of the polymer to cause partitioning of the lipophilic drug into the aqueous phase during the change from the cubic gel phase to cubosomes. In vitro analysis of fluoxetine-loaded cubosomal in situ gel showed a sustained release profile (93.22 ± 2.47%) due to limited diffusion of fluoxetine. The formation of strong affinity bonds of the drug with GMO (drug transporter) decreased the drug release in comparison to that with fluoxetine-loaded cubosomes (90.68 ± 1.74%). The ex vivo drug release profile revealed the drug release of 96.31 ± 2.88% by the end of 24 h. This is attributed to the higher capability of the intranasal cubosomal in situ gel to prolong the retention and enable better permeation through the nasal mucosa. In male Wistar rats, in vivo biodistribution studies for cubosomal in situ gel administered via the intranasal route at a dose of 3.5 mg/kg demonstrated an increase in pharmacokinetic parameters like the AUC (406 ± 75.35 µg/mL), Cmax (368.07 ± 0.23 µg/mL), Tmax (4 h), and t1/2 (14.06 h). The mucoadhesive nature of the in situ gel led to an increase in the residence time of the gel in the nasal mucosa. The biodistribution study of intranasal in situ cubosomal gel improved the bioavailability 2.21-fold in comparison to that with the cubosomal dispersion but 2.83-fold in comparison to that with the drug solution. Therefore, fluoxetine-loaded cubosomal in situ gel proved as a promising carrier for effective transportation of fluoxetine via the intranasal route with significant brain bioavailability.
Palabras clave
Texto completo:
1
Bases de datos:
MEDLINE
Asunto principal:
Encéfalo
/
Administración Intranasal
/
Disponibilidad Biológica
/
Fluoxetina
Límite:
Animals
Idioma:
En
Revista:
Mol Pharm
Asunto de la revista:
BIOLOGIA MOLECULAR
/
FARMACIA
/
FARMACOLOGIA
Año:
2024
Tipo del documento:
Article
País de afiliación:
India