Your browser doesn't support javascript.
loading
The DIAD Approach to Correlative Synchrotron X-ray Imaging and Diffraction Analysis of Human Enamel.
Besnard, Cyril; Marie, Ali; Sasidharan, Sisini; Deyhle, Hans; James, Andrew M; Ahmed, Sharif I; Reinhard, Christina; Harper, Robert A; Shelton, Richard M; Landini, Gabriel; Korsunsky, Alexander M.
Afiliación
  • Besnard C; Department of Engineering Science, University of Oxford, Oxford, Oxfordshire OX1 3PJ, United Kingdom.
  • Marie A; Department of Engineering Science, University of Oxford, Oxford, Oxfordshire OX1 3PJ, United Kingdom.
  • Sasidharan S; Department of Engineering Science, University of Oxford, Oxford, Oxfordshire OX1 3PJ, United Kingdom.
  • Deyhle H; Diamond Light Source Ltd., Didcot, Oxfordshire OX11 0DE, United Kingdom.
  • James AM; Diamond Light Source Ltd., Didcot, Oxfordshire OX11 0DE, United Kingdom.
  • Ahmed SI; Diamond Light Source Ltd., Didcot, Oxfordshire OX11 0DE, United Kingdom.
  • Reinhard C; Diamond Light Source Ltd., Didcot, Oxfordshire OX11 0DE, United Kingdom.
  • Harper RA; School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham, West Midlands B5 7EG, United Kingdom.
  • Shelton RM; School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham, West Midlands B5 7EG, United Kingdom.
  • Landini G; School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham, West Midlands B5 7EG, United Kingdom.
  • Korsunsky AM; Trinity College, University of Oxford, Broad Street, Oxford, Oxfordshire OX1 3BH, United Kingdom.
Chem Biomed Imaging ; 2(3): 222-232, 2024 Mar 25.
Article en En | MEDLINE | ID: mdl-38551011
ABSTRACT
The Dual Imaging and Diffraction (DIAD) beamline at Diamond Light Source (Didcot, U.K.) implements a correlative approach to the dynamic study of materials based on concurrent analysis of identical sample locations using complementary X-ray modalities to reveal structural detail at various length scales. Namely, the underlying beamline principle and its practical implementation allow the collocation of chosen regions within the sample and their interrogation using real-space imaging (radiography and tomography) and reciprocal space scattering (diffraction). The switching between the two principal modes is made smooth and rapid by design, so that the data collected is interlaced to obtain near-simultaneous multimodal characterization. Different specific photon energies are used for each mode, and the interlacing of acquisition steps allows conducting static and dynamic experiments. Building on the demonstrated realization of this state-of-the-art approach requires further refining of the experimental practice, namely, the methods for gauge volume collocation under different modes of beam-sample interaction. To address this challenge, experiments were conducted at DIAD devoted to the study of human dental enamel, a hierarchical structure composed of hydroxyapatite mineral nanocrystals, as a static sample previously affected by dental caries (tooth decay) as well as under dynamic conditions simulating the process of acid demineralization. Collocation and correlation were achieved between WAXS (wide-angle X-ray scattering), 2D (radiographic), and 3D (tomographic) imaging. While X-ray imaging in 2D or 3D modes reveals real-space details of the sample microstructure, X-ray scattering data for each gauge volume provided statistical nanoscale and ultrastructural polycrystal reciprocal-space information such as phase and preferred orientation (texture). Careful registration of the gauge volume positions recorded during the scans allowed direct covisualization of the data from two modalities. Diffraction gauge volumes were identified and visualized within the tomographic data sets, revealing the underlying local information to support the interpretation of the diffraction patterns. The present implementation of the 4D microscopy paradigm allowed following the progression of demineralization and its correlation with time-dependent WAXS pattern evolution in an approach that is transferable to other material systems.

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Chem Biomed Imaging Año: 2024 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Chem Biomed Imaging Año: 2024 Tipo del documento: Article País de afiliación: Reino Unido