Your browser doesn't support javascript.
loading
Magnetic Phase Transition-Induced Modulation of Ferroelectric Properties in Hexagonal RFeO3 (R = Tb and Ho).
Liu, Yaoming; Chen, Binjie; Hamasaki, Yosuke; Gong, Lizhikun; Ohta, Hiromichi; Katayama, Tsukasa.
Afiliación
  • Liu Y; Graduate School of Information Science and Technology, Hokkaido University, N14W9, Kita, Sapporo 060-0814, Japan.
  • Chen B; Graduate School of Information Science and Technology, Hokkaido University, N14W9, Kita, Sapporo 060-0814, Japan.
  • Hamasaki Y; Department of Applied Physics, National Defense Academy, Yokosuka 239-8686, Japan.
  • Gong L; Graduate School of Information Science and Technology, Hokkaido University, N14W9, Kita, Sapporo 060-0814, Japan.
  • Ohta H; Research Institute for Electronic Science, Hokkaido University, N20W10, Kita, Sapporo 001-0020, Japan.
  • Katayama T; Research Institute for Electronic Science, Hokkaido University, N20W10, Kita, Sapporo 001-0020, Japan.
ACS Appl Mater Interfaces ; 16(14): 17832-17837, 2024 Apr 10.
Article en En | MEDLINE | ID: mdl-38557007
ABSTRACT
Hexagonal rare-earth iron oxides (h-RFeO3) exhibit spontaneous magnetization and room-temperature ferroelectricity simultaneously. However, achieving a large magnetoelectric coupling necessitates further exploration. Herein, we report the impact of the magnetic phase transition on the ferroelectric properties of epitaxial h-RFeO3 (R = Tb and Ho) films prepared by pulsed laser deposition. The metastable h-RFeO3 phase is successfully stabilized with high crystallinity and low leakage current due to the ITO buffer layer, making it possible to investigate the ferroelectric properties. The h-TbFeO3 film exhibits a magnetic-field-induced transition from antiferromagnetic (AFM) to weak ferromagnetic (wFM) phases below 30 K, while also exhibiting ferroelectricity at 300 K. The dielectric constants change with the magnetic phase transition, demonstrating hysteresis in the magnetocapacitance. In contrast, the h-HoFeO3 film exhibits antiferroelectric-like behavior and an AFM-wFM phase transition. Notably, the h-HoFeO3 film shows a rapid increase in the remnant polarization during the AFM-wFM phase transition accompanied by an increase in the ferroelectric component. Considering the strong connection between the antiferroelectric behavior in the h-RFeO3 system and the ferroelectric domain wall motion, this considerable modification of ferroelectric properties during the magnetic phase transition is probably due to the faster movement of the ferroelectric domain walls in the wFM phase induced by the clamping effect. Our findings indicate the effectiveness of magnetic phase transitions in enhancing the magnetoelectric coupling, particularly when utilizing domain wall clamping properties.
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: Japón

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: Japón