Your browser doesn't support javascript.
loading
Enhancing urban blue-green landscape quality assessment through hybrid genetic algorithm-back propagation (GA-BP) neural network approach: a case study in Fucheng, China.
Fan, Ding; Maliki, Nor Zarifah Binti; Yu, Siwei; Jin, Fengcheng; Han, Xinyan.
Afiliación
  • Fan D; School of Housing, Building, and Planning, Universiti Sains Malaysia, George, Penang, 11800, Malaysia. fanding@student.usm.my.
  • Maliki NZB; School of Art and Design, Leshan Normal University, Leshan, 614000, Sichuan Province, China. fanding@student.usm.my.
  • Yu S; School of Housing, Building, and Planning, Universiti Sains Malaysia, George, Penang, 11800, Malaysia.
  • Jin F; School of Art and Design, Leshan Normal University, Leshan, 614000, Sichuan Province, China. yusw113@gmail.com.
  • Han X; School of Art and Design, Leshan Normal University, Leshan, 614000, Sichuan Province, China.
Environ Monit Assess ; 196(5): 424, 2024 Apr 04.
Article en En | MEDLINE | ID: mdl-38573531
ABSTRACT
This study employs an artificial neural network optimization algorithm, enhanced with a Genetic Algorithm-Back Propagation (GA-BP) network, to assess the service quality of urban water bodies and green spaces, aiming to promote healthy urban environments. From an initial set of 95 variables, 29 key variables were selected, including 17 input variables, such as water and green space area, population size, and urbanization rate, six hidden layer neurons, such as patch number, patch density, and average patch size, and one output variable for the comprehensive value of blue-green landscape quality. The results indicate that the GA-BP network achieves an average relative error of 0.94772%, which is superior to the 1.5988% of the traditional BP network. Moreover, it boasts a prediction accuracy of 90% for the comprehensive value of landscape quality from 2015 to 2022, significantly outperforming the BP network's approximate 70% accuracy. This method enhances the accuracy of landscape quality assessment but also aids in identifying crucial factors influencing quality. It provides scientific and objective guidance for future urban landscape structure and layout, contributing to high-quality urban development and the creation of exemplary living areas.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Monitoreo del Ambiente / Redes Neurales de la Computación País/Región como asunto: Asia Idioma: En Revista: Environ Monit Assess Asunto de la revista: SAUDE AMBIENTAL Año: 2024 Tipo del documento: Article País de afiliación: Malasia

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Monitoreo del Ambiente / Redes Neurales de la Computación País/Región como asunto: Asia Idioma: En Revista: Environ Monit Assess Asunto de la revista: SAUDE AMBIENTAL Año: 2024 Tipo del documento: Article País de afiliación: Malasia