Your browser doesn't support javascript.
loading
The effects of repeated freezing and thawing on bovine sperm morphometry and function.
Min, Chang-Guo; Ma, Xin; Wang, Yu-Chan; Zhong, Cheng-Kun; Yuan, Chong-Shan; Zhang, Kai-Yan; Zhan, Cheng-Lin; Hou, Sheng-Kui; Wang, Xin-Hai; Wang, Jun; Zhao, Jing; Fang, Yi; Liu, Hong-Yu; Ding, He; Guo, Jing; Lu, Wen-Fa.
Afiliación
  • Min CG; Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China; Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin,
  • Ma X; Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China; Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin,
  • Wang YC; Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China; Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin,
  • Zhong CK; Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China; Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin,
  • Yuan CS; Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China; Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin,
  • Zhang KY; Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China; Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin,
  • Zhan CL; Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China; Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin,
  • Hou SK; Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China; Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin,
  • Wang XH; Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China; Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin,
  • Wang J; Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China; Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin,
  • Zhao J; Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China; Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin,
  • Fang Y; Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China; Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin,
  • Liu HY; Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China; Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin,
  • Ding H; Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China; Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin,
  • Guo J; Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China; Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin,
  • Lu WF; Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China; Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin,
Cryobiology ; 115: 104892, 2024 Jun.
Article en En | MEDLINE | ID: mdl-38593909
ABSTRACT
Refreezing the remaining genetic resources after in vitro fertilization (IVF) can conserve genetic materials. However, the precise damage inflicted by repeated freezing and thawing on bovine sperm and its underlying mechanism remain largely unexplored. Thus, this study investigates the impact of repeated freeze-thaw cycles on sperm. Our findings indicate that such cycles significantly reduce sperm viability and motility. Furthermore, the integrity of the sperm plasma membrane and acrosome is compromised during this process, exacerbating the advanced apoptosis triggered by oxidative stress. Additionally, transmission electron microscopy exposed severe damage to the plasma membranes of both the sperm head and tail. Notably, the "9 + 2" structure of the tail was disrupted, along with a significant decrease in the level of the axonemal protein DNAH10, leading to reduced sperm motility. IVF outcomes revealed that repeated freeze-thaw cycles considerably impair sperm fertilization capability, ultimately reducing the blastocyst rate. In summary, our research demonstrates that repeated freeze-thaw cycles lead to a decline in sperm viability and motility, attributed to oxidative stress-induced apoptosis and DNAH10-related dynamic deficiency. As a result, the utility of semen is compromised after repeated freezing.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Preservación de Semen / Motilidad Espermática / Espermatozoides / Fertilización In Vitro / Criopreservación / Apoptosis / Estrés Oxidativo / Congelación Límite: Animals Idioma: En Revista: Cryobiology Año: 2024 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Preservación de Semen / Motilidad Espermática / Espermatozoides / Fertilización In Vitro / Criopreservación / Apoptosis / Estrés Oxidativo / Congelación Límite: Animals Idioma: En Revista: Cryobiology Año: 2024 Tipo del documento: Article