Your browser doesn't support javascript.
loading
Narcissus reflected: Grey and white matter features joint contribution to the default mode network in predicting narcissistic personality traits.
Jornkokgoud, Khanitin; Baggio, Teresa; Bakiaj, Richard; Wongupparaj, Peera; Job, Remo; Grecucci, Alessandro.
Afiliación
  • Jornkokgoud K; Department of Research and Applied Psychology, Faculty of Education, Burapha University, Chonburi, Thailand.
  • Baggio T; Department of Psychology and Cognitive Science (DiPSCo), University of Trento, Rovereto, Italy.
  • Bakiaj R; Department of Psychology and Cognitive Science (DiPSCo), University of Trento, Rovereto, Italy.
  • Wongupparaj P; Department of Psychology and Cognitive Science (DiPSCo), University of Trento, Rovereto, Italy.
  • Job R; Department of Psychology, Faculty of Humanities and Social Sciences, Burapha University, Chonburi, Thailand.
  • Grecucci A; Department of Psychology and Cognitive Science (DiPSCo), University of Trento, Rovereto, Italy.
Eur J Neurosci ; 59(12): 3273-3291, 2024 Jun.
Article en En | MEDLINE | ID: mdl-38649337
ABSTRACT
Despite the clinical significance of narcissistic personality, its neural bases have not been clarified yet, primarily because of methodological limitations of the previous studies, such as the low sample size, the use of univariate techniques and the focus on only one brain modality. In this study, we employed for the first time a combination of unsupervised and supervised machine learning methods, to identify the joint contributions of grey matter (GM) and white matter (WM) to narcissistic personality traits (NPT). After preprocessing, the brain scans of 135 participants were decomposed into eight independent networks of covarying GM and WM via parallel ICA. Subsequently, stepwise regression and Random Forest were used to predict NPT. We hypothesized that a fronto-temporo parietal network, mainly related to the default mode network, may be involved in NPT and associated WM regions. Results demonstrated a distributed network that included GM alterations in fronto-temporal regions, the insula and the cingulate cortex, along with WM alterations in cerebellar and thalamic regions. To assess the specificity of our findings, we also examined whether the brain network predicting narcissism could also predict other personality traits (i.e., histrionic, paranoid and avoidant personalities). Notably, this network did not predict such personality traits. Additionally, a supervised machine learning model (Random Forest) was used to extract a predictive model for generalization to new cases. Results confirmed that the same network could predict new cases. These findings hold promise for advancing our understanding of personality traits and potentially uncovering brain biomarkers associated with narcissism.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Personalidad / Sustancia Gris / Sustancia Blanca / Red en Modo Predeterminado / Narcisismo Límite: Adult / Female / Humans / Male Idioma: En Revista: Eur J Neurosci Asunto de la revista: NEUROLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Tailandia

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Personalidad / Sustancia Gris / Sustancia Blanca / Red en Modo Predeterminado / Narcisismo Límite: Adult / Female / Humans / Male Idioma: En Revista: Eur J Neurosci Asunto de la revista: NEUROLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Tailandia