Optically Triggered Emergent Mesostructures in Monolayer WS2.
Nano Lett
; 24(18): 5436-5443, 2024 May 08.
Article
en En
| MEDLINE
| ID: mdl-38656103
ABSTRACT
The ultrahigh surface area of two-dimensional materials can drive multimodal coupling between optical, electrical, and mechanical properties that leads to emergent dynamical responses not possible in three-dimensional systems. We observed that optical excitation of the WS2 monolayer above the exciton energy creates symmetrically patterned mechanical protrusions which can be controlled by laser intensity and wavelength. This observed photostrictive behavior is attributed to lattice expansion due to the formation of polarons, which are charge carriers dressed by lattice vibrations. Scanning Kelvin probe force microscopy measurements and density functional theory calculations reveal unconventional charge transport properties such as the spatially and optical intensity-dependent conversion in the WS2 monolayer from apparent n- to p-type and the subsequent formation of effective p-n junctions at the boundaries between regions with different defect densities. The strong opto-electrical-mechanical coupling in the WS2 monolayer reveals previously unexplored properties, which can lead to new applications in optically driven ultrathin microactuators.
Texto completo:
1
Bases de datos:
MEDLINE
Idioma:
En
Revista:
Nano Lett
Año:
2024
Tipo del documento:
Article
País de afiliación:
Estados Unidos