Your browser doesn't support javascript.
loading
Exploring the link between a novel approach for computer aided lung sound analysis and imaging biomarkers: a cross-sectional study.
Lauwers, Eline; Stas, Toon; McLane, Ian; Snoeckx, Annemiek; Van Hoorenbeeck, Kim; De Backer, Wilfried; Ides, Kris; Steckel, Jan; Verhulst, Stijn.
Afiliación
  • Lauwers E; Laboratory of Experimental Medicine and Pediatrics and member of Infla-Med Research Consortium of Excellence, University of Antwerp, Wilrijk, Belgium. eline.lauwers@uantwerpen.be.
  • Stas T; Fluidda NV, Kontich, Belgium. eline.lauwers@uantwerpen.be.
  • McLane I; CoSys-Lab Research Group, University of Antwerp and Flanders Make Strategic Research Center, Wilrijk, Lommel, Belgium.
  • Snoeckx A; Sonavi Labs, Baltimore, MD, USA.
  • Van Hoorenbeeck K; Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA.
  • De Backer W; Department of Radiology, Antwerp University Hospital, Edegem, Belgium.
  • Ides K; Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium.
  • Steckel J; Laboratory of Experimental Medicine and Pediatrics and member of Infla-Med Research Consortium of Excellence, University of Antwerp, Wilrijk, Belgium.
  • Verhulst S; Department of Pediatrics, Antwerp University Hospital, Edegem, Belgium.
Respir Res ; 25(1): 177, 2024 Apr 24.
Article en En | MEDLINE | ID: mdl-38658980
ABSTRACT

BACKGROUND:

Computer Aided Lung Sound Analysis (CALSA) aims to overcome limitations associated with standard lung auscultation by removing the subjective component and allowing quantification of sound characteristics. In this proof-of-concept study, a novel automated approach was evaluated in real patient data by comparing lung sound characteristics to structural and functional imaging biomarkers.

METHODS:

Patients with cystic fibrosis (CF) aged > 5y were recruited in a prospective cross-sectional study. CT scans were analyzed by the CF-CT scoring method and Functional Respiratory Imaging (FRI). A digital stethoscope was used to record lung sounds at six chest locations. Following sound characteristics were determined expiration-to-inspiration (E/I) signal power ratios within different frequency ranges, number of crackles per respiratory phase and wheeze parameters. Linear mixed-effects models were computed to relate CALSA parameters to imaging biomarkers on a lobar level.

RESULTS:

222 recordings from 25 CF patients were included. Significant associations were found between E/I ratios and structural abnormalities, of which the ratio between 200 and 400 Hz appeared to be most clinically relevant due to its relation with bronchiectasis, mucus plugging, bronchial wall thickening and air trapping on CT. The number of crackles was also associated with multiple structural abnormalities as well as regional airway resistance determined by FRI. Wheeze parameters were not considered in the statistical analysis, since wheezing was detected in only one recording.

CONCLUSIONS:

The present study is the first to investigate associations between auscultatory findings and imaging biomarkers, which are considered the gold standard to evaluate the respiratory system. Despite the exploratory nature of this study, the results showed various meaningful associations that highlight the potential value of automated CALSA as a novel non-invasive outcome measure in future research and clinical practice.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Biomarcadores / Ruidos Respiratorios / Fibrosis Quística Límite: Adolescent / Adult / Child / Female / Humans / Male / Middle aged Idioma: En Revista: Respir Res Año: 2024 Tipo del documento: Article País de afiliación: Bélgica

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Biomarcadores / Ruidos Respiratorios / Fibrosis Quística Límite: Adolescent / Adult / Child / Female / Humans / Male / Middle aged Idioma: En Revista: Respir Res Año: 2024 Tipo del documento: Article País de afiliación: Bélgica