Your browser doesn't support javascript.
loading
A biomechanical analysis of novel endovascular implants for aortic valve replacement and ascending aortic repair.
Zuo, Hui; Feng, Wentao; Wu, Jingbo; Gao, Tong; Fan, Yubo.
Afiliación
  • Zuo H; Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
  • Feng W; Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
  • Wu J; Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
  • Gao T; Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
  • Fan Y; Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
Article en En | MEDLINE | ID: mdl-38695545
ABSTRACT
Advances in medical technology have enabled minimally invasive treatment of type A aortic dissection with accompanying aortic regurgitation. Implants include endovascular stent grafts (ESG) and heart valve substitute (HVS) modules. Traditional implants can be divided into two types based on the assembly relationship between ESG and HVS separated z-shaped implants (SZ) and separated diamond-shaped implants (SD). This study proposes a novel linked diamond-shaped implant (LD). To evaluate the safety and effectiveness of this new implant, finite element simulation models were created to assess the risks of endoleak, migration, and vascular wall rupture under annulus displacement load. After the SZ, SD, and LD implants were grafted in virtual release method, all the implants can cover tear-entry located in the ascending aorta, but space distance (δ) which exposed to blood was 14.5, 13.1, and 7.4 mm, respectively; the maximum areas of contact gap was 76.5, 51.5 and 6.3 mm2; the maximum migration distance (ΔL1) were 1.27, 1.06, and 0.1 mm; the maximum stress on ascending aorta was 0.19, 0.24, and 0.51 MPa, which were lower than failure stress (0.9 MPa). This study showed that both SZ and SD implants had minimal effects on the ascending aorta; however, higher risks were associated with implant migration and proximal endoleak. In contrast, the LD implant can simplify the surgical procedure, has a lower risk of endoleak and migration, and limited stress stimulation of the aorta. This study validated the feasibility and effectiveness of this novel implant using the finite element method, indicating its potential as a secure and reliable treatment option.
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Comput Methods Biomech Biomed Engin Asunto de la revista: ENGENHARIA BIOMEDICA / FISIOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Comput Methods Biomech Biomed Engin Asunto de la revista: ENGENHARIA BIOMEDICA / FISIOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: China