Your browser doesn't support javascript.
loading
Essential role of glycoprotein Ibα in platelet activation.
Yan, Rong; Xia, Yue; Zhou, Kangxi; Liu, Jun; Sun, Yueyue; He, Chunyan; Ge, Xinxin; Yang, Mengnan; Sun, Chenglin; Yuan, Liuxia; Li, Shujun; Yang, Biao; Meng, Fanbi; Cao, Lijuan; Ruan, Changgeng; Dai, Kesheng.
Afiliación
  • Yan R; Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, C
  • Xia Y; Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, C
  • Zhou K; Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, C
  • Liu J; Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, C
  • Sun Y; Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, C
  • He C; Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China.
  • Ge X; Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, C
  • Yang M; Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, C
  • Sun C; Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, C
  • Yuan L; Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, C
  • Li S; Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, C
  • Yang B; Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, C
  • Meng F; Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, C
  • Cao L; Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, C
  • Ruan C; Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, C
  • Dai K; Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, C
Blood Adv ; 8(13): 3388-3401, 2024 Jul 09.
Article en En | MEDLINE | ID: mdl-38701351
ABSTRACT
ABSTRACT Glycoprotein Ibα (GPIbα), the ligand-binding subunit of platelet GPIb-IX complex, interacts with von Willebrand factor (VWF) exposed at the injured vessel wall, initiating platelet adhesion, activation, hemostasis, and thrombus formation. The cytoplasmic tail of GPIbα interacts with 14-3-3ζ, regulating the VWF-GPIbα-elicited signal transduction and VWF binding function of GPIbα. However, we unexpectedly found that the GPIbα-14-3-3ζ association, beyond VWF-dependent function, is essential for general platelet activation. We found that the myristoylated peptide of GPIbα C-terminus MPαC, a potential GPIbα inhibitor, by itself induced platelet aggregation, integrin αIIbß3 activation, granule secretion, and phosphatidylserine (PS) exposure. Conversely, the deletion of the cytoplasmic tail of GPIbα in mouse platelets (10aa-/-) decreased platelet aggregation, integrin αIIbß3 activation, granule secretion, and PS exposure induced by various physiological agonists. Phosphoproteome-based kinase activity profiling revealed significantly upregulated protein kinase C (PKC) activity in MPαC-treated platelets. MPαC-induced platelet activation was abolished by the pan-PKC inhibitor and PKCα deletion. Decreased PKC activity was observed in both resting and agonist-stimulated 10aa-/- platelets. GPIbα regulates PKCα activity by sequestering 14-3-3ζ from PKCα. In vivo, the deletion of the GPIbα cytoplasmic tail impaired mouse hemostasis and thrombus formation and protected against platelet-dependent pulmonary thromboembolism. Therefore, our findings demonstrate an essential role for the GPIbα cytoplasmic tail in regulating platelet general activation and thrombus formation beyond the VWF-GPIbα axis.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Plaquetas / Activación Plaquetaria / Complejo GPIb-IX de Glicoproteína Plaquetaria Límite: Animals / Humans Idioma: En Revista: Blood Adv Año: 2024 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Plaquetas / Activación Plaquetaria / Complejo GPIb-IX de Glicoproteína Plaquetaria Límite: Animals / Humans Idioma: En Revista: Blood Adv Año: 2024 Tipo del documento: Article