Your browser doesn't support javascript.
loading
Robust prediction of relative binding energies for protein-protein complex mutations using free energy perturbation calculations.
Sampson, Jared M; Cannon, Daniel A; Duan, Jianxin; Epstein, Jordan C K; Sergeeva, Alina P; Katsamba, Phinikoula S; Mannepalli, Seetha M; Bahna, Fabiana A; Adihou, Hélène; Guéret, Stéphanie M; Gopalakrishnan, Ranganath; Geschwindner, Stefan; Rees, D Gareth; Sigurdardottir, Anna; Wilkinson, Trevor; Dodd, Roger B; De Maria, Leonardo; Mobarec, Juan Carlos; Shapiro, Lawrence; Honig, Barry; Buchanan, Andrew; Friesner, Richard A; Wang, Lingle.
Afiliación
  • Sampson JM; Schrödinger, Inc., Life Sciences Software, New York, NY, USA.
  • Cannon DA; Schrödinger, GmbH, Life Sciences Software, Mannheim, Germany.
  • Duan J; Schrödinger, GmbH, Life Sciences Software, Mannheim, Germany.
  • Epstein JCK; Schrödinger, Inc., Life Sciences Software, New York, NY, USA.
  • Sergeeva AP; Columbia University, Department of Systems Biology, New York, NY, USA.
  • Katsamba PS; Columbia University, Zuckerman Mind Brain Behavior Institute, New York, NY, USA, 10027.
  • Mannepalli SM; Columbia University, Zuckerman Mind Brain Behavior Institute, New York, NY, USA, 10027.
  • Bahna FA; Columbia University, Zuckerman Mind Brain Behavior Institute, New York, NY, USA, 10027.
  • Adihou H; AstraZeneca, Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, Gothenburg, Sweden.
  • Guéret SM; Max Planck Institute of Molecular Physiology, AstraZeneca-MPI Satellite Unit, Dortmund, Germany.
  • Gopalakrishnan R; AstraZeneca, Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, Gothenburg, Sweden.
  • Geschwindner S; Max Planck Institute of Molecular Physiology, AstraZeneca-MPI Satellite Unit, Dortmund, Germany.
  • Rees DG; AstraZeneca, Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, Gothenburg, Sweden.
  • Sigurdardottir A; Max Planck Institute of Molecular Physiology, AstraZeneca-MPI Satellite Unit, Dortmund, Germany.
  • Wilkinson T; AstraZeneca, Mechanistic and Structural Biology, Discovery Sciences, R&D, Cambridge, UK.
  • Dodd RB; AstraZeneca, Biologics Engineering, R&D, Cambridge, UK.
  • De Maria L; AstraZeneca, Biologics Engineering, R&D, Cambridge, UK.
  • Mobarec JC; AstraZeneca, Biologics Engineering, R&D, Cambridge, UK.
  • Shapiro L; AstraZeneca, Biologics Engineering, R&D, Cambridge, UK.
  • Honig B; AstraZeneca, Medicinal Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, Gothenburg, Sweden.
  • Buchanan A; AstraZeneca, Mechanistic and Structural Biology, Discovery Sciences, R&D, Cambridge, UK.
  • Friesner RA; Columbia University, Zuckerman Mind Brain Behavior Institute, New York, NY, USA, 10027.
  • Wang L; Columbia University, Department of Biochemistry and Molecular Biophysics, New York, NY, USA.
bioRxiv ; 2024 Apr 24.
Article en En | MEDLINE | ID: mdl-38712280
ABSTRACT
Computational free energy-based methods have the potential to significantly improve throughput and decrease costs of protein design efforts. Such methods must reach a high level of reliability, accuracy, and automation to be effectively deployed in practical industrial settings in a way that impacts protein design projects. Here, we present a benchmark study for the calculation of relative changes in protein-protein binding affinity for single point mutations across a variety of systems from the literature, using free energy perturbation (FEP+) calculations. We describe a method for robust treatment of alternate protonation states for titratable amino acids, which yields improved correlation with and reduced error compared to experimental binding free energies. Following careful analysis of the largest outlier cases in our dataset, we assess limitations of the default FEP+ protocols and introduce an automated script which identifies probable outlier cases that may require additional scrutiny and calculates an empirical correction for a subset of charge-related outliers. Through a series of three additional case study systems, we discuss how protein FEP+ can be applied to real-world protein design projects, and suggest areas of further study.
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: BioRxiv Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: BioRxiv Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos