Your browser doesn't support javascript.
loading
Optimized submerged batch fermentation for metabolic switching in Streptomyces yanglinensis 3-10 providing platform for reveromycin A and B biosynthesis, engineering, and production.
Yang, Longyan; Shakeel, Qaiser; Xu, Xueqin; Ali, Liaqat; Chen, Zhiyan; Mubeen, Mustansar; Sohail, Muhammad Aamir; IfItikhar, Yasir; Kumar, Ajay; Solanki, Manoj Kumar; Zhou, Yun; Zhao, Dongling; Alharbi, Nada K; Wang, Jie.
Afiliación
  • Yang L; China Tobacco Guangxi Industrial Co., Ltd., Nanning, China.
  • Shakeel Q; Cholistan Institute of Desert Studies, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
  • Xu X; China Tobacco Guangxi Industrial Co., Ltd., Nanning, China.
  • Ali L; Cholistan Institute of Desert Studies, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
  • Chen Z; China Tobacco Guangxi Industrial Co., Ltd., Nanning, China.
  • Mubeen M; Department of Plant Pathology, College of Agriculture, University of Sargodha, Sargodha, Pakistan.
  • Sohail MA; National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
  • IfItikhar Y; Department of Plant Pathology, College of Agriculture, University of Sargodha, Sargodha, Pakistan.
  • Kumar A; Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India.
  • Solanki MK; Department of Life Sciences and Biological Sciences, IES University, Bhopal, Madhya Pradesh, India.
  • Zhou Y; Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland.
  • Zhao D; China Tobacco Guangxi Industrial Co., Ltd., Nanning, China.
  • Alharbi NK; China Tobacco Guangxi Industrial Co., Ltd., Nanning, China.
  • Wang J; Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
Front Microbiol ; 15: 1378834, 2024.
Article en En | MEDLINE | ID: mdl-38784807
ABSTRACT
The cultivation system requires that the approach providing biomass for all types of metabolic analysis is of excellent quality and reliability. This study was conducted to enhance the efficiency and yield of antifungal substance (AFS) production in Streptomyces yanglinensis 3-10 by optimizing operation conditions of aeration, agitation, carbon source, and incubation time in a fermenter. Dissolved oxygen (DO) and pH were found to play significant roles in AFS production. The optimum pH for the production of AFS in S. yanglinensis 3-10 was found to be 6.5. As the AFS synthesis is generally thought to be an aerobic process, DO plays a significant role. The synthesis of bioactive compounds can vary depending on how DO affects growth rate. This study validates that the high growth rate and antifungal activity required a minimum DO concentration of approximately 20% saturation. The DO supply in a fermenter can be raised once agitation and aeration have been adjusted. Consequently, DO can stimulate the development of bacteria and enzyme production. A large shearing effect could result from the extreme agitation, harming the cell and deactivating its products. The highest inhibition zone diameter (IZD) was obtained with 3% starch, making starch a more efficient carbon source than glucose. Temperature is another important factor affecting AFS production. The needed fermentation time would increase and AFS production would be reduced by the too-low operating temperature. Furthermore, large-scale fermenters are challenging to manage at temperatures that are far below from room temperature. According to this research, 28°C is the ideal temperature for the fermentation of S. yanglinensis 3-10. The current study deals with the optimization of submerged batch fermentation involving the modification of operation conditions to effectively enhance the efficiency and yield of AFS production in S. yanglinensis 3-10.
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Front Microbiol Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Front Microbiol Año: 2024 Tipo del documento: Article País de afiliación: China