Your browser doesn't support javascript.
loading
Ultra-stable insulin-glucagon fusion protein exploits an endogenous hepatic switch to mitigate hypoglycemic risk.
bioRxiv ; 2024 May 21.
Article en En | MEDLINE | ID: mdl-38826486
ABSTRACT
The risk of hypoglycemia and its serious medical sequelae restrict insulin replacement therapy for diabetes mellitus. Such adverse clinical impact has motivated development of diverse glucose-responsive technologies, including algorithm-controlled insulin pumps linked to continuous glucose monitors ("closed-loop systems") and glucose-sensing ("smart") insulins. These technologies seek to optimize glycemic control while minimizing hypoglycemic risk. Here, we describe an alternative approach that exploits an endogenous glucose-dependent switch in hepatic physiology preferential insulin signaling (under hyperglycemic conditions) versus preferential counter-regulatory glucagon signaling (during hypoglycemia). Motivated by prior reports of glucagon-insulin co-infusion, we designed and tested an ultra-stable glucagon-insulin fusion protein whose relative hormonal activities were calibrated by respective modifications; physical stability was concurrently augmented to facilitate formulation, enhance shelf life and expand access. An N-terminal glucagon moiety was stabilized by an α-helix-compatible Lys 13 -Glu 17 lactam bridge; A C-terminal insulin moiety was stabilized as a single chain with foreshortened C domain. Studies in vitro demonstrated (a) resistance to fibrillation on prolonged agitation at 37 °C and (b) dual hormonal signaling activities with appropriate balance. Glucodynamic responses were monitored in rats relative to control fusion proteins lacking one or the other hormonal activity, and continuous intravenous infusion emulated basal subcutaneous therapy. Whereas efficacy in mitigating hyperglycemia was unaffected by the glucagon moiety, the fusion protein enhanced endogenous glucose production under hypoglycemic conditions. Together, these findings provide proof of principle toward a basal glucose-responsive insulin biotechnology of striking simplicity. The fusion protein's augmented stability promises to circumvent the costly cold chain presently constraining global insulin access. Significance Statement The therapeutic goal of insulin replacement therapy in diabetes is normalization of blood-glucose concentration, which prevents or delays long-term complications. A critical barrier is posed by recurrent hypoglycemic events that results in short- and long-term morbidities. An innovative approach envisions co-injection of glucagon (a counter-regulatory hormone) to exploit a glycemia-dependent hepatic switch in relative hormone responsiveness. To provide an enabling technology, we describe an ultra-stable fusion protein containing insulin- and glucagon moieties. Proof of principle was obtained in rats. A single-chain insulin moiety provides glycemic control whereas a lactam-stabilized glucagon extension mitigates hypoglycemia. This dual-hormone fusion protein promises to provide a basal formulation with reduced risk of hypoglycemia. Resistance to fibrillation may circumvent the cold chain required for global access.

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: BioRxiv Año: 2024 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: BioRxiv Año: 2024 Tipo del documento: Article