Your browser doesn't support javascript.
loading
Complementary environmental analysis and functional characterization of lower glycolysis-gluconeogenesis in the diatom plastid.
Dorrell, Richard G; Zhang, Youjun; Liang, Yue; Gueguen, Nolwenn; Nonoyama, Tomomi; Croteau, Dany; Penot-Raquin, Mathias; Adiba, Sandrine; Bailleul, Benjamin; Gros, Valérie; Pierella Karlusich, Juan José; Zweig, Nathanaël; Fernie, Alisdair R; Jouhet, Juliette; Maréchal, Eric; Bowler, Chris.
Afiliación
  • Dorrell RG; Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France.
  • Zhang Y; CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France.
  • Liang Y; Laboratory of Computational and Quantitative Biology (LCQB), Institut de Biologie Paris-Seine (IBPS), CNRS, INSERM, Sorbonne Université, Paris 75005, France.
  • Gueguen N; Department of Plant Metabolomics, Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria.
  • Nonoyama T; Central Plant Metabolism Group, Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany.
  • Croteau D; Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
  • Penot-Raquin M; Center of Deep Sea Research, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
  • Adiba S; Laboratory for Marine Mineral Resources, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China.
  • Bailleul B; Laboratoire de Physiologie Cellulaire et Végétale, CNRS, University Grenoble Alpes, CEA, INRAE, IRIG, 38000 Grenoble, France.
  • Gros V; Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France.
  • Pierella Karlusich JJ; Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan.
  • Zweig N; Institut de Biologie Physico-Chimique (IBPC), Université PSL, Paris 75005, France.
  • Fernie AR; Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France.
  • Jouhet J; CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France.
  • Maréchal E; Laboratory of Computational and Quantitative Biology (LCQB), Institut de Biologie Paris-Seine (IBPS), CNRS, INSERM, Sorbonne Université, Paris 75005, France.
  • Bowler C; Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France.
Plant Cell ; 36(9): 3584-3610, 2024 Sep 03.
Article en En | MEDLINE | ID: mdl-38842420
ABSTRACT
Organic carbon fixed in chloroplasts through the Calvin-Benson-Bassham Cycle can be diverted toward different metabolic fates, including cytoplasmic and mitochondrial respiration, gluconeogenesis, and synthesis of diverse plastid metabolites via the pyruvate hub. In plants, pyruvate is principally produced via cytoplasmic glycolysis, although a plastid-targeted lower glycolytic pathway is known to exist in non-photosynthetic tissue. Here, we characterized a lower plastid glycolysis-gluconeogenesis pathway enabling the direct interconversion of glyceraldehyde-3-phosphate and phospho-enol-pyruvate in diatoms, ecologically important marine algae distantly related to plants. We show that two reversible enzymes required to complete diatom plastid glycolysis-gluconeogenesis, Enolase and bis-phosphoglycerate mutase (PGAM), originated through duplications of mitochondria-targeted respiratory isoforms. Through CRISPR-Cas9 mutagenesis, integrative 'omic analyses, and measured kinetics of expressed enzymes in the diatom Phaeodactylum tricornutum, we present evidence that this pathway diverts plastid glyceraldehyde-3-phosphate into the pyruvate hub, and may also function in the gluconeogenic direction. Considering experimental data, we show that this pathway has different roles dependent in particular on day length and environmental temperature, and show that the cpEnolase and cpPGAM genes are expressed at elevated levels in high-latitude oceans where diatoms are abundant. Our data provide evolutionary, meta-genomic, and functional insights into a poorly understood yet evolutionarily recurrent plastid metabolic pathway.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Diatomeas / Plastidios / Gluconeogénesis / Glucólisis Idioma: En Revista: Plant Cell Asunto de la revista: BOTANICA Año: 2024 Tipo del documento: Article País de afiliación: Francia

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Diatomeas / Plastidios / Gluconeogénesis / Glucólisis Idioma: En Revista: Plant Cell Asunto de la revista: BOTANICA Año: 2024 Tipo del documento: Article País de afiliación: Francia