Your browser doesn't support javascript.
loading
CAbiNet: joint clustering and visualization of cells and genes for single-cell transcriptomics.
Zhao, Yan; Kohl, Clemens; Rosebrock, Daniel; Hu, Qinan; Hu, Yuhui; Vingron, Martin.
Afiliación
  • Zhao Y; Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany.
  • Kohl C; Department of Pharmacology, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, Guangdong, P.R. China.
  • Rosebrock D; Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055 Guangdong, P.R. China.
  • Hu Q; Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany.
  • Hu Y; Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany.
  • Vingron M; Department of Pharmacology, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, Guangdong, P.R. China.
Nucleic Acids Res ; 52(13): e57, 2024 Jul 22.
Article en En | MEDLINE | ID: mdl-38850160
ABSTRACT
A fundamental analysis task for single-cell transcriptomics data is clustering with subsequent visualization of cell clusters. The genes responsible for the clustering are only inferred in a subsequent step. Clustering cells and genes together would be the remit of biclustering algorithms, which are often bogged down by the size of single-cell data. Here we present 'Correspondence Analysis based Biclustering on Networks' (CAbiNet) for joint clustering and visualization of single-cell RNA-sequencing data. CAbiNet performs efficient co-clustering of cells and their respective marker genes and jointly visualizes the biclusters in a non-linear embedding for easy and interactive visual exploration of the data.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Algoritmos / Programas Informáticos / Perfilación de la Expresión Génica / Análisis de la Célula Individual / Transcriptoma Límite: Humans Idioma: En Revista: Nucleic Acids Res Año: 2024 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Algoritmos / Programas Informáticos / Perfilación de la Expresión Génica / Análisis de la Célula Individual / Transcriptoma Límite: Humans Idioma: En Revista: Nucleic Acids Res Año: 2024 Tipo del documento: Article País de afiliación: Alemania