CAbiNet: joint clustering and visualization of cells and genes for single-cell transcriptomics.
Nucleic Acids Res
; 52(13): e57, 2024 Jul 22.
Article
en En
| MEDLINE
| ID: mdl-38850160
ABSTRACT
A fundamental analysis task for single-cell transcriptomics data is clustering with subsequent visualization of cell clusters. The genes responsible for the clustering are only inferred in a subsequent step. Clustering cells and genes together would be the remit of biclustering algorithms, which are often bogged down by the size of single-cell data. Here we present 'Correspondence Analysis based Biclustering on Networks' (CAbiNet) for joint clustering and visualization of single-cell RNA-sequencing data. CAbiNet performs efficient co-clustering of cells and their respective marker genes and jointly visualizes the biclusters in a non-linear embedding for easy and interactive visual exploration of the data.
Texto completo:
1
Bases de datos:
MEDLINE
Asunto principal:
Algoritmos
/
Programas Informáticos
/
Perfilación de la Expresión Génica
/
Análisis de la Célula Individual
/
Transcriptoma
Límite:
Humans
Idioma:
En
Revista:
Nucleic Acids Res
Año:
2024
Tipo del documento:
Article
País de afiliación:
Alemania