Your browser doesn't support javascript.
loading
A circumpolar study unveils a positive non-linear effect of temperature on arctic arthropod availability that may reduce the risk of warming-induced trophic mismatch for breeding shorebirds.
Chagnon-Lafortune, Aurélie; Duchesne, Éliane; Legagneux, Pierre; McKinnon, Laura; Reneerkens, Jeroen; Casajus, Nicolas; Abraham, Kenneth F; Bolduc, Élise; Brown, Glen S; Brown, Stephen C; Gates, H River; Gilg, Olivier; Giroux, Marie-Andrée; Gurney, Kirsty; Kendall, Steve; Kwon, Eunbi; Lanctot, Richard B; Lank, David B; Lecomte, Nicolas; Leung, Maria; Liebezeit, Joseph R; Morrison, R I Guy; Nol, Erica; Payer, David C; Reid, Donald; Ruthrauff, Daniel; Saalfeld, Sarah T; Sandercock, Brett K; Smith, Paul A; Schmidt, Niels Martin; Tulp, Ingrid; Ward, David H; Høye, Toke T; Berteaux, Dominique; Bêty, Joël.
Afiliación
  • Chagnon-Lafortune A; Chaire de Recherche du Canada en Biodiversité Nordique, Département de Biologie, and Centre d'études Nordiques, Université du Québec à Rimouski, Rimouski, Québec, Canada.
  • Duchesne É; Chaire de Recherche du Canada en Biodiversité Nordique, Département de Biologie, and Centre d'études Nordiques, Université du Québec à Rimouski, Rimouski, Québec, Canada.
  • Legagneux P; Département de Biologie, Chaire de Recherche Sentinelle Nord Sur l'impact des Migrations Animales Sur les Écosystèmes Nordiques et Centre d'études Nordiques, Université Laval, Québec City, Québec, Canada.
  • McKinnon L; CNRS- Centre d'Études Biologiques de Chizé - UMR 7372, Beauvoir-sur-Niort, France.
  • Reneerkens J; Department of Multidisciplinary Studies and Graduate Program in Biology, York University, Glendon Campus, Toronto, Ontario, Canada.
  • Casajus N; Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands.
  • Abraham KF; Chaire de Recherche du Canada en Biodiversité Nordique, Département de Biologie, and Centre d'études Nordiques, Université du Québec à Rimouski, Rimouski, Québec, Canada.
  • Bolduc É; Wildlife Research and Monitoring Section, Ontario Ministry of Natural Resources and Forestry, Trent University, Peterborough, Ontario, Canada.
  • Brown GS; Chaire de Recherche du Canada en Biodiversité Nordique, Département de Biologie, and Centre d'études Nordiques, Université du Québec à Rimouski, Rimouski, Québec, Canada.
  • Brown SC; Wildlife Research and Monitoring Section, Ontario Ministry of Natural Resources and Forestry, Trent University, Peterborough, Ontario, Canada.
  • Gates HR; Manomet Inc., Manomet, Massachusetts, USA.
  • Gilg O; Manomet, Shorebird Recovery Program, Plymouth, Massachusetts, USA.
  • Giroux MA; Migratory Bird Management, U.S. Fish and Wildlife Service, Anchorage, Alaska, USA.
  • Gurney K; Laboratoire Chrono-Environnement, UMR 6249 CNRS-UFC, Université de Franche-Comté, Besançon, France.
  • Kendall S; Groupe de Recherche en Écologie Arctique, Francheville, France.
  • Kwon E; K.-C.-Irving Research Chair in Environmental Sciences and Sustainable Development, Université de Moncton, Moncton, New Brunswick, Canada.
  • Lanctot RB; Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, USA.
  • Lank DB; Arctic National Wildlife Refuge, U.S. Fish and Wildlife Service, Fairbanks, Alaska, USA.
  • Lecomte N; Department of Behavioural Ecology & Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany.
  • Leung M; Migratory Bird Management, U.S. Fish and Wildlife Service, Anchorage, Alaska, USA.
  • Liebezeit JR; Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada.
  • Morrison RIG; Canada Research Chair in Polar and Boreal Ecology, Centre d'études Nordiques, Université de Moncton, Moncton, New Brunswick, Canada.
  • Nol E; Wild Tracks Ecological Consulting, Whitehorse, Yukon, Canada.
  • Payer DC; Bird Alliance of Oregon, Portland, Oregon, USA.
  • Reid D; National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada.
  • Ruthrauff D; Department of Biology, Trent University, Peterborough, Ontario, Canada.
  • Saalfeld ST; U.S. Fish and Wildlife Service, Fairbanks, Alaska, USA.
  • Sandercock BK; Wildlife Conservation Society Canada, Whitehorse, Yukon, Canada.
  • Smith PA; Alaska Science Center, US Geological Survey, Anchorage, Alaska, USA.
  • Schmidt NM; Migratory Bird Management, U.S. Fish and Wildlife Service, Anchorage, Alaska, USA.
  • Tulp I; Department of Terrestrial Ecology, Norwegian Institute for Nature Research, Trondheim, Norway.
  • Ward DH; Wildlife Research Division, Environment and Climate Change Canada, Ottawa, Ontario, Canada.
  • Høye TT; Department of Ecoscience and Arctic Research Centre, Aarhus University, Roskilde, Denmark.
  • Berteaux D; Wageningen Marine Research, Wageningen University & Research, IJmuiden, The Netherlands.
  • Bêty J; Alaska Science Center, US Geological Survey, Anchorage, Alaska, USA.
Glob Chang Biol ; 30(6): e17356, 2024 Jun.
Article en En | MEDLINE | ID: mdl-38853470
ABSTRACT
Seasonally abundant arthropods are a crucial food source for many migratory birds that breed in the Arctic. In cold environments, the growth and emergence of arthropods are particularly tied to temperature. Thus, the phenology of arthropods is anticipated to undergo a rapid change in response to a warming climate, potentially leading to a trophic mismatch between migratory insectivorous birds and their prey. Using data from 19 sites spanning a wide temperature gradient from the Subarctic to the High Arctic, we investigated the effects of temperature on the phenology and biomass of arthropods available to shorebirds during their short breeding season at high latitudes. We hypothesized that prolonged exposure to warmer summer temperatures would generate earlier peaks in arthropod biomass, as well as higher peak and seasonal biomass. Across the temperature gradient encompassed by our study sites (>10°C in average summer temperatures), we found a 3-day shift in average peak date for every increment of 80 cumulative thawing degree-days. Interestingly, we found a linear relationship between temperature and arthropod biomass only below temperature thresholds. Higher temperatures were associated with higher peak and seasonal biomass below 106 and 177 cumulative thawing degree-days, respectively, between June 5 and July 15. Beyond these thresholds, no relationship was observed between temperature and arthropod biomass. Our results suggest that prolonged exposure to elevated temperatures can positively influence prey availability for some arctic birds. This positive effect could, in part, stem from changes in arthropod assemblages and may reduce the risk of trophic mismatch.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Artrópodos / Estaciones del Año / Temperatura / Biomasa Límite: Animals Idioma: En Revista: Glob Chang Biol Año: 2024 Tipo del documento: Article País de afiliación: Canadá

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Artrópodos / Estaciones del Año / Temperatura / Biomasa Límite: Animals Idioma: En Revista: Glob Chang Biol Año: 2024 Tipo del documento: Article País de afiliación: Canadá