Your browser doesn't support javascript.
loading
Density Functional Theory-Fed Phase Field Model for Semiconductor Nanostructures: The Case of Self-Induced Core-Shell InAlN Nanorods.
Filho, Manoel Alves Machado; Farmer, William; Hsiao, Ching-Lien; Dos Santos, Renato Batista; Hultman, Lars; Birch, Jens; Ankit, Kumar; Gueorguiev, Gueorgui Kostov.
Afiliación
  • Filho MAM; Thin Film Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping SE 581 83, Sweden.
  • Farmer W; Machadornos LTDA - Cursos, Mentoria e Consultoria, Rua Lindolfo Rocha, 47-2° Centro, Jequié, Bahia 45200-120, Brazil.
  • Hsiao CL; Materials Science and Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, 551 E. Tyler Mall, Tempe, Arizona 85287, United States.
  • Dos Santos RB; Thin Film Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping SE 581 83, Sweden.
  • Hultman L; Instituto Federal de Educação, Ciência e Tecnologia Baiano, Itaberaba, Bahia 46880-000, Brazil.
  • Birch J; Thin Film Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping SE 581 83, Sweden.
  • Ankit K; Thin Film Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping SE 581 83, Sweden.
  • Gueorguiev GK; Materials Science and Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, 551 E. Tyler Mall, Tempe, Arizona 85287, United States.
Cryst Growth Des ; 24(11): 4717-4727, 2024 Jun 05.
Article en En | MEDLINE | ID: mdl-38855578
ABSTRACT
The self-induced formation of core-shell InAlN nanorods (NRs) is addressed at the mesoscopic scale by density functional theory (DFT)-resulting parameters to develop phase field modeling (PFM). Accounting for the structural, bonding, and electronic features of immiscible semiconductor systems at the nanometer scale, we advance DFT-based procedures for computation of the parameters necessary for PFM simulation runs, namely, interfacial energies and diffusion coefficients. The developed DFT procedures conform to experimental self-induced InAlN NRs' concerning phase-separation, core/shell interface, morphology, and composition. Finally, we infer the prospects for the transferability of the coupled DFT-PFM simulation approach to a wider range of nanostructured semiconductor materials.

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Cryst Growth Des Año: 2024 Tipo del documento: Article País de afiliación: Suecia

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Cryst Growth Des Año: 2024 Tipo del documento: Article País de afiliación: Suecia