Your browser doesn't support javascript.
loading
What is the optimal isodose line for stereotactic radiotherapy for single brain metastases using HyperArc?
Sagawa, Tomohiro; Ikawa, Toshiki; Ohira, Shingo; Kanayama, Naoyuki; Ueda, Yoshihiro; Inui, Shoki; Miyazaki, Masayoshi; Konishi, Koji.
Afiliación
  • Sagawa T; Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan.
  • Ikawa T; Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan.
  • Ohira S; Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan.
  • Kanayama N; Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan.
  • Ueda Y; Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan.
  • Inui S; Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan.
  • Miyazaki M; Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan.
  • Konishi K; Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan.
J Appl Clin Med Phys ; 25(9): e14408, 2024 Sep.
Article en En | MEDLINE | ID: mdl-38863310
ABSTRACT

PURPOSE:

The study aimed to investigate the optimal isodose line (IDL) in linear accelerator-based stereotactic radiotherapy for single brain metastasis, using HyperArc. We compared the dosimetric parameters for target and normal brain tissue among six plans with different IDLs.

METHODS:

This study included 30 patients with single brain metastasis. We retrospectively generated six plans for each tumor with different IDLs (80%, 70%, 60%, 50%, 40%, and 33%) using HyperArc. All treatment plans were normalized to the prescription dose of 35 Gy in five fractions which was covered by 95% of the planning target volume (PTV), defined by adding a 1.0 mm margin to the gross tumor volume (GTV). The dosimetric parameters were compared among the six plans.

RESULTS:

For GTV > 0.1 cm3, the ratio of brain-GTV volumes receiving 25 Gy to PTV (V25Gy/PTV) was significantly lower at IDL 40%-70% than at IDL 80% and 33% (p < 0.01, retrospectively). For GTV < 0.1 cm3, V25Gy/PTV decreased continuously as IDL decreased. The values of D99% and D80% for GTV increased with decreasing IDL. An IDL of 50% or less was required to achieve D99% of greater than 43 Gy and D80% of greater than 50 Gy. The mean values of D99% and D80% for IDL 50% were 44.3 and 51.9 Gy.

CONCLUSION:

The optimal IDL is 40%-50% for GTV > 0.1 cm3. These lower IDLs could increase D99% and D80% of GTV while lowering V25Gy of normal brain tissue, which may help reduce the risk of radiation necrosis and improve local control.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Dosificación Radioterapéutica / Planificación de la Radioterapia Asistida por Computador / Neoplasias Encefálicas / Radiocirugia / Radioterapia de Intensidad Modulada / Órganos en Riesgo Límite: Aged / Female / Humans / Male / Middle aged Idioma: En Revista: J Appl Clin Med Phys Asunto de la revista: BIOFISICA Año: 2024 Tipo del documento: Article País de afiliación: Japón

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Dosificación Radioterapéutica / Planificación de la Radioterapia Asistida por Computador / Neoplasias Encefálicas / Radiocirugia / Radioterapia de Intensidad Modulada / Órganos en Riesgo Límite: Aged / Female / Humans / Male / Middle aged Idioma: En Revista: J Appl Clin Med Phys Asunto de la revista: BIOFISICA Año: 2024 Tipo del documento: Article País de afiliación: Japón