Your browser doesn't support javascript.
loading
Machine learning model for cardiovascular disease prediction in patients with chronic kidney disease.
Zhu, He; Qiao, Shen; Zhao, Delong; Wang, Keyun; Wang, Bin; Niu, Yue; Shang, Shunlai; Dong, Zheyi; Zhang, Weiguang; Zheng, Ying; Chen, Xiangmei.
Afiliación
  • Zhu H; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China.
  • Qiao S; School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China.
  • Zhao D; Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China.
  • Wang K; National Engineering Research Center of Medical Big Data, PLA General Hospital, Beijing, China.
  • Wang B; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China.
  • Niu Y; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China.
  • Shang S; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China.
  • Dong Z; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China.
  • Zhang W; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China.
  • Zheng Y; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China.
  • Chen X; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China.
Front Endocrinol (Lausanne) ; 15: 1390729, 2024.
Article en En | MEDLINE | ID: mdl-38863928
ABSTRACT

Introduction:

Cardiovascular disease (CVD) is the leading cause of death in patients with chronic kidney disease (CKD). This study aimed to develop CVD risk prediction models using machine learning to support clinical decision making and improve patient prognosis.

Methods:

Electronic medical records from patients with CKD at a single center from 2015 to 2020 were used to develop machine learning models for the prediction of CVD. Least absolute shrinkage and selection operator (LASSO) regression was used to select important features predicting the risk of developing CVD. Seven machine learning classification algorithms were used to build models, which were evaluated by receiver operating characteristic curves, accuracy, sensitivity, specificity, and F1-score, and Shapley Additive explanations was used to interpret the model results. CVD was defined as composite cardiovascular events including coronary heart disease (coronary artery disease, myocardial infarction, angina pectoris, and coronary artery revascularization), cerebrovascular disease (hemorrhagic stroke and ischemic stroke), deaths from all causes (cardiovascular deaths, non-cardiovascular deaths, unknown cause of death), congestive heart failure, and peripheral artery disease (aortic aneurysm, aortic or other peripheral arterial revascularization). A cardiovascular event was a composite outcome of multiple cardiovascular events, as determined by reviewing medical records.

Results:

This study included 8,894 patients with CKD, with a composite CVD event incidence of 25.9%; a total of 2,304 patients reached this outcome. LASSO regression identified eight important features for predicting the risk of CKD developing into CVD age, history of hypertension, sex, antiplatelet drugs, high-density lipoprotein, sodium ions, 24-h urinary protein, and estimated glomerular filtration rate. The model developed using Extreme Gradient Boosting in the test set had an area under the curve of 0.89, outperforming the other models, indicating that it had the best CVD predictive performance.

Conclusion:

This study established a CVD risk prediction model for patients with CKD, based on routine clinical diagnostic and treatment data, with good predictive accuracy. This model is expected to provide a scientific basis for the management and treatment of patients with CKD.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Enfermedades Cardiovasculares / Insuficiencia Renal Crónica / Aprendizaje Automático Límite: Adult / Aged / Female / Humans / Male / Middle aged Idioma: En Revista: Front Endocrinol (Lausanne) Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Enfermedades Cardiovasculares / Insuficiencia Renal Crónica / Aprendizaje Automático Límite: Adult / Aged / Female / Humans / Male / Middle aged Idioma: En Revista: Front Endocrinol (Lausanne) Año: 2024 Tipo del documento: Article País de afiliación: China