Your browser doesn't support javascript.
loading
Harnessing landrace diversity empowers wheat breeding.
Cheng, Shifeng; Feng, Cong; Wingen, Luzie U; Cheng, Hong; Riche, Andrew B; Jiang, Mei; Leverington-Waite, Michelle; Huang, Zejian; Collier, Sarah; Orford, Simon; Wang, Xiaoming; Awal, Rajani; Barker, Gary; O'Hara, Tom; Lister, Clare; Siluveru, Ajay; Quiroz-Chávez, Jesús; Ramírez-González, Ricardo H; Bryant, Ruth; Berry, Simon; Bansal, Urmil; Bariana, Harbans S; Bennett, Malcolm J; Bicego, Breno; Bilham, Lorelei; Brown, James K M; Burridge, Amanda; Burt, Chris; Buurman, Milika; Castle, March; Chartrain, Laetitia; Chen, Baizhi; Denbel, Worku; Elkot, Ahmed F; Fenwick, Paul; Feuerhelm, David; Foulkes, John; Gaju, Oorbessy; Gauley, Adam; Gaurav, Kumar; Hafeez, Amber N; Han, Ruirui; Horler, Richard; Hou, Junliang; Iqbal, Muhammad S; Kerton, Matthew; Kondic-Spica, Ankica; Kowalski, Ania; Lage, Jacob; Li, Xiaolong.
Afiliación
  • Cheng S; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China. chengshifeng@caas.cn.
  • Feng C; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
  • Wingen LU; John Innes Centre, Norwich, UK.
  • Cheng H; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
  • Riche AB; Rothamsted Research, Harpenden, UK.
  • Jiang M; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
  • Leverington-Waite M; John Innes Centre, Norwich, UK.
  • Huang Z; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
  • Collier S; John Innes Centre, Norwich, UK.
  • Orford S; John Innes Centre, Norwich, UK.
  • Wang X; John Innes Centre, Norwich, UK.
  • Awal R; State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China.
  • Barker G; John Innes Centre, Norwich, UK.
  • O'Hara T; Functional Genomics, School of Biological Sciences, University of Bristol, Bristol, UK.
  • Lister C; John Innes Centre, Norwich, UK.
  • Siluveru A; John Innes Centre, Norwich, UK.
  • Quiroz-Chávez J; John Innes Centre, Norwich, UK.
  • Ramírez-González RH; John Innes Centre, Norwich, UK.
  • Bryant R; John Innes Centre, Norwich, UK.
  • Berry S; RAGT, Saffron Walden, UK.
  • Bansal U; Limagrain UK, Bury St Edmunds, UK.
  • Bariana HS; School of Life and Environmental Sciences, Faculty of Science, The University of Sydney Plant Breeding Institute, Cobbitty, New South Wales, Australia.
  • Bennett MJ; School of Life and Environmental Sciences, Faculty of Science, The University of Sydney Plant Breeding Institute, Cobbitty, New South Wales, Australia.
  • Bicego B; Western Sydney University, Richmond, New South Wales, Australia.
  • Bilham L; School of Biosciences, University of Nottingham, Sutton Bonington, UK.
  • Brown JKM; Department of Agricultural and Forest Sciences and Engineering, University of Lleida-AGROTECNIO-CERCA Center, Lleida, Spain.
  • Burridge A; John Innes Centre, Norwich, UK.
  • Burt C; John Innes Centre, Norwich, UK.
  • Buurman M; Functional Genomics, School of Biological Sciences, University of Bristol, Bristol, UK.
  • Castle M; RAGT, Saffron Walden, UK.
  • Chartrain L; Elsoms Wheat, Spalding, UK.
  • Chen B; Rothamsted Research, Harpenden, UK.
  • Denbel W; John Innes Centre, Norwich, UK.
  • Elkot AF; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
  • Fenwick P; Debre Zeit Agricultural Research Center, Ethiopian Institute of Agricultural Research, Debre Zeit, Ethiopia.
  • Feuerhelm D; Wheat Research Department, Field Crops Research Institute, Agricultural Research Center, Giza, Egypt.
  • Foulkes J; Limagrain UK, Market Rasen, UK.
  • Gaju O; Syngenta Seeds, Cambridge, UK.
  • Gauley A; School of Biosciences, University of Nottingham, Sutton Bonington, UK.
  • Gaurav K; School of Biosciences, University of Nottingham, Sutton Bonington, UK.
  • Hafeez AN; School of Biology, University of Leeds, Leeds, UK.
  • Han R; Agri-Food and Biosciences Institute, Belfast, UK.
  • Horler R; John Innes Centre, Norwich, UK.
  • Hou J; John Innes Centre, Norwich, UK.
  • Iqbal MS; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
  • Kerton M; Qingdao Agricultural University, Qingdao, China.
  • Kondic-Spica A; John Innes Centre, Norwich, UK.
  • Kowalski A; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
  • Lage J; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
  • Li X; DSV UK, Banbury, UK.
Nature ; 2024 Jun 17.
Article en En | MEDLINE | ID: mdl-38885696
ABSTRACT
Harnessing genetic diversity in major staple crops through the development of new breeding capabilities is essential to ensure food security1. Here we examined the genetic and phenotypic diversity of the A. E. Watkins landrace collection2 of bread wheat (Triticum aestivum), a major global cereal, by whole-genome re-sequencing of 827 Watkins landraces and 208 modern cultivars and in-depth field evaluation spanning a decade. We found that modern cultivars are derived from two of the seven ancestral groups of wheat and maintain very long-range haplotype integrity. The remaining five groups represent untapped genetic sources, providing access to landrace-specific alleles and haplotypes for breeding. Linkage disequilibrium-based haplotypes and association genetics analyses link Watkins genomes to the thousands of identified high-resolution quantitative trait loci and significant marker-trait associations. Using these structured germplasm, genotyping and informatics resources, we revealed many Watkins-unique beneficial haplotypes that can confer superior traits in modern wheat. Furthermore, we assessed the phenotypic effects of 44,338 Watkins-unique haplotypes, introgressed from 143 prioritized quantitative trait loci in the context of modern cultivars, bridging the gap between landrace diversity and current breeding. This study establishes a framework for systematically utilizing genetic diversity in crop improvement to achieve sustainable food security.

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Nature Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Nature Año: 2024 Tipo del documento: Article País de afiliación: China