Your browser doesn't support javascript.
loading
Neuronal avalanches in temporal lobe epilepsy as a noninvasive diagnostic tool investigating large scale brain dynamics.
Corsi, Marie-Constance; Troisi Lopez, Emahnuel; Sorrentino, Pierpaolo; Cuozzo, Simone; Danieli, Alberto; Bonanni, Paolo; Duma, Gian Marco.
Afiliación
  • Corsi MC; Sorbonne Université, Institut du Cerveau - Paris Brain Institute -ICM, CNRS, Inria, Inserm, AP-HP, Hopital de la Pitié Salpêtrière, 75013, Paris, France. marie-constance.corsi@inria.fr.
  • Troisi Lopez E; Institute of Applied Sciences and Intelligent Systems of National Research Council, Pozzuoli, Italy.
  • Sorrentino P; Institut de Neurosciences des Systèmes, Aix-Marseille Université, 13005, Marseille, France. pierpaolo.SORRENTINO@univ-amu.fr.
  • Cuozzo S; Department of Biomedical Sciences, University of Sassari, Viale San Pietro, 07100, Sassari, Italy. pierpaolo.SORRENTINO@univ-amu.fr.
  • Danieli A; Epilepsy Unit, IRCCS E. Medea Scientific Institute, Via Costa Alta 37, 31015, Conegliano, Treviso, Italy.
  • Bonanni P; Epilepsy Unit, IRCCS E. Medea Scientific Institute, Via Costa Alta 37, 31015, Conegliano, Treviso, Italy.
  • Duma GM; Epilepsy Unit, IRCCS E. Medea Scientific Institute, Via Costa Alta 37, 31015, Conegliano, Treviso, Italy.
Sci Rep ; 14(1): 14039, 2024 06 18.
Article en En | MEDLINE | ID: mdl-38890363
ABSTRACT
The epilepsy diagnosis still represents a complex process, with misdiagnosis reaching 40%. We aimed at building an automatable workflow, helping the clinicians in the diagnosis of temporal lobe epilepsy (TLE). We hypothesized that neuronal avalanches (NA) represent a feature better encapsulating the rich brain dynamics compared to classically used functional connectivity measures (Imaginary Coherence; ImCoh). We analyzed large-scale activation bursts (NA) from source estimation of resting-state electroencephalography. Using a support vector machine, we reached a classification accuracy of TLE versus controls of 0.86 ± 0.08 (SD) and an area under the curve of 0.93 ± 0.07. The use of NA features increase by around 16% the accuracy of diagnosis prediction compared to ImCoh. Classification accuracy increased with larger signal duration, reaching a plateau at 5 min of recording. To summarize, NA represents an interpretable feature for an automated epilepsy identification, being related with intrinsic neuronal timescales of pathology-relevant regions.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Encéfalo / Electroencefalografía / Epilepsia del Lóbulo Temporal / Neuronas Límite: Adult / Female / Humans / Male / Middle aged Idioma: En Revista: Sci Rep Año: 2024 Tipo del documento: Article País de afiliación: Francia

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Encéfalo / Electroencefalografía / Epilepsia del Lóbulo Temporal / Neuronas Límite: Adult / Female / Humans / Male / Middle aged Idioma: En Revista: Sci Rep Año: 2024 Tipo del documento: Article País de afiliación: Francia