Your browser doesn't support javascript.
loading
1-Hexene Ozonolysis across Atmospheric and Combustion Temperatures via Synchrotron-Based Photoelectron Spectroscopy and Chemical Ionization Mass Spectrometry.
Smith Lewin, Caroline; Kumar, Avinash; Herbinet, Olivier; Arnoux, Philippe; Asgher, Rabbia; Barua, Shawon; Battin-Leclerc, Frédérique; Farhoudian, Sana; Garcia, Gustavo A; Tran, Luc-Sy; Vanhove, Guillaume; Nahon, Laurent; Rissanen, Matti; Bourgalais, Jérémy.
Afiliación
  • Smith Lewin C; LRGP, Université de Lorraine, CNRS, F-54000 Nancy, France.
  • Kumar A; Aerosol Physics Laboratory, Tampere University, FI-33101 Tampere, Finland.
  • Herbinet O; LRGP, Université de Lorraine, CNRS, F-54000 Nancy, France.
  • Arnoux P; LRGP, Université de Lorraine, CNRS, F-54000 Nancy, France.
  • Asgher R; Aerosol Physics Laboratory, Tampere University, FI-33101 Tampere, Finland.
  • Barua S; Aerosol Physics Laboratory, Tampere University, FI-33101 Tampere, Finland.
  • Battin-Leclerc F; LRGP, Université de Lorraine, CNRS, F-54000 Nancy, France.
  • Farhoudian S; Aerosol Physics Laboratory, Tampere University, FI-33101 Tampere, Finland.
  • Garcia GA; Synchrotron SOLEIL, L'Orme des Merisiers, 91192 Gif-sur-Yvette Cedex, France.
  • Tran LS; PC2A, Université Lille, CNRS, F-59000 Lille, France.
  • Vanhove G; PC2A, Université Lille, CNRS, F-59000 Lille, France.
  • Nahon L; Synchrotron SOLEIL, L'Orme des Merisiers, 91192 Gif-sur-Yvette Cedex, France.
  • Rissanen M; Aerosol Physics Laboratory, Tampere University, FI-33101 Tampere, Finland.
  • Bourgalais J; Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland.
J Phys Chem A ; 128(27): 5374-5385, 2024 Jul 11.
Article en En | MEDLINE | ID: mdl-38917032
ABSTRACT
This study investigates the complex interaction between ozone and the autoxidation of 1-hexene over a wide temperature range (300-800 K), overlapping atmospheric and combustion regimes. It is found that atmospheric molecular mechanisms initiate the oxidation of 1-hexene from room temperature up to combustion temperatures, leading to the formation of highly oxygenated organic molecules. As temperature rises, the highly oxygenated organic molecules contribute to radical-branching decomposition pathways inducing a high reactivity in the low-temperature combustion region, i.e., from 550 K. Above 650 K, the thermal decomposition of ozone into oxygen atoms becomes the dominant process, and a remarkable enhancement of the conversion is observed due to their diradical nature, counteracting the significant negative temperature coefficient behavior usually observed for 1-hexene. In order to better characterize the formation of heavy oxygenated organic molecules at the lowest temperatures, two analytical performance methods have been combined for the first time synchrotron-based mass-selected photoelectron spectroscopy and orbitrap chemical ionization mass spectrometry. At the lowest studied temperatures (below 400 K), this analytical work has demonstrated the formation of the ketohydroperoxides usually found during the LTC oxidation of 1-hexene, as well as of molecules containing up to nine O atoms.

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: J Phys Chem A Asunto de la revista: QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Francia

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: J Phys Chem A Asunto de la revista: QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Francia