Your browser doesn't support javascript.
loading
EEG decoding with spatiotemporal convolutional neural network for visualization and closed-loop control of sensorimotor activities: A simultaneous EEG-fMRI study.
Iwama, Seitaro; Tsuchimoto, Shohei; Mizuguchi, Nobuaki; Ushiba, Junichi.
Afiliación
  • Iwama S; Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan.
  • Tsuchimoto S; School of Fundamental Science and Technology, Graduate School of Keio University, Yokohama, Japan.
  • Mizuguchi N; Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki, Japan.
  • Ushiba J; Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Japan.
Hum Brain Mapp ; 45(9): e26767, 2024 Jun 15.
Article en En | MEDLINE | ID: mdl-38923184
ABSTRACT
Closed-loop neurofeedback training utilizes neural signals such as scalp electroencephalograms (EEG) to manipulate specific neural activities and the associated behavioral performance. A spatiotemporal filter for high-density whole-head scalp EEG using a convolutional neural network can overcome the ambiguity of the signaling source because each EEG signal includes information on the remote regions. We simultaneously acquired EEG and functional magnetic resonance images in humans during the brain-computer interface (BCI) based neurofeedback training and compared the reconstructed and modeled hemodynamic responses of the sensorimotor network. Filters constructed with a convolutional neural network captured activities in the targeted network with spatial precision and specificity superior to those of the EEG signals preprocessed with standard pipelines used in BCI-based neurofeedback paradigms. The middle layers of the trained model were examined to characterize the neuronal oscillatory features that contributed to the reconstruction. Analysis of the layers for spatial convolution revealed the contribution of distributed cortical circuitries to reconstruction, including the frontoparietal and sensorimotor areas, and those of temporal convolution layers that successfully reconstructed the hemodynamic response function. Employing a spatiotemporal filter and leveraging the electrophysiological signatures of the sensorimotor excitability identified in our middle layer analysis would contribute to the development of a further effective neurofeedback intervention.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Imagen por Resonancia Magnética / Redes Neurales de la Computación / Electroencefalografía / Neurorretroalimentación / Interfaces Cerebro-Computador / Corteza Sensoriomotora Límite: Adult / Female / Humans / Male Idioma: En Revista: Hum Brain Mapp Asunto de la revista: CEREBRO Año: 2024 Tipo del documento: Article País de afiliación: Japón

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Imagen por Resonancia Magnética / Redes Neurales de la Computación / Electroencefalografía / Neurorretroalimentación / Interfaces Cerebro-Computador / Corteza Sensoriomotora Límite: Adult / Female / Humans / Male Idioma: En Revista: Hum Brain Mapp Asunto de la revista: CEREBRO Año: 2024 Tipo del documento: Article País de afiliación: Japón