Your browser doesn't support javascript.
loading
Evaluation of a Positron Emission Tomography Tracer Targeting Colony-Stimulating Factor 1 Receptor for Detecting Pulmonary Inflammation.
Hui, Wenxue; Pu, Suyun; Gao, Xinyan; Wang, Yunze; Zha, Xiaochuan; Ding, Kezhi; Zhang, Xiaoyu; Cheng, Dengfeng; Shi, Hongcheng; Luo, Zonghua.
Afiliación
  • Hui W; School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China.
  • Pu S; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
  • Gao X; School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China.
  • Wang Y; School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
  • Zha X; School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China.
  • Ding K; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
  • Zhang X; Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
  • Cheng D; School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China.
  • Shi H; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
  • Luo Z; School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China.
Mol Pharm ; 2024 Jun 27.
Article en En | MEDLINE | ID: mdl-38935927
ABSTRACT
Colony-stimulating factor 1 receptor (CSF1R) is a type III receptor tyrosine kinase that is crucial for immune cell activation, survival, proliferation, and differentiation. Its expression significantly increases in macrophages during inflammation, playing a crucial role in regulating inflammation resolution and termination. Consequently, CSF1R has emerged as a critical target for both therapeutic intervention and imaging of inflammatory diseases. Herein, we have developed a radiotracer, 1-[4-((7-(dimethylamino)quinazolin-4-yl)oxy)phenyl]-3-(4-[18F]fluorophenyl)urea ([18F]17), for in vivo positron emission tomography (PET) imaging of CSF1R. Compound 17 exhibits a comparable inhibitory potency against CSF1R as the well-known CSF1R inhibitor PLX647. The radiosynthesis of [18F]17 was successfully performed by radiofluorination of aryltrimethyltin precursor with a yield of approximately 12% at the end of synthesis, maintaining a purity exceeding 98%. In vivo stability and biodistribution studies demonstrate that [18F]17 remains >90% intact at 30 min postinjection, with no defluorination observed even at 60 min postinjection. The PET/CT imaging study in lipopolysaccharide-induced pulmonary inflammation mice indicates that [18F]17 offers a more sensitive characterization of pulmonary inflammation compared to traditional [18F]FDG. Notably, [18F]17 shows a higher discrepancy in uptake ratio between mice with pulmonary inflammation and the sham group. Furthermore, the variations in [18F]17 uptake ratio observed on day 7 and day 14 correspond to lung density changes observed in CT imaging. Moreover, the expression levels of CSF1R on day 7 and day 14 follow a trend similar to the uptake pattern of [18F]17, indicating its potential for accurately characterizing CSF1R expression levels and effectively monitoring the pulmonary inflammation progression. These results strongly suggest that [18F]17 has promising prospects as a CSF1R PET tracer, providing diagnostic opportunities for pulmonary inflammatory diseases.
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Mol Pharm Asunto de la revista: BIOLOGIA MOLECULAR / FARMACIA / FARMACOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Mol Pharm Asunto de la revista: BIOLOGIA MOLECULAR / FARMACIA / FARMACOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: China