Your browser doesn't support javascript.
loading
Intranasal delivery of liposome encapsulated flavonoids ameliorates l-DOPA induced dyskinesia in hemiparkinsonian mice.
Ahmed, Mohamed Rafiuddin; Inayathullah, Mohammed; Morton, Mithya; Pothineni, Venkata Raveendra; Kim, Kwangmin; Ahmed, Mohamed Sohail; Babar, Mustafeez Mujtaba; Rajadas, Jayakumar.
Afiliación
  • Ahmed MR; Advanced Drug Delivery and Regenerative Biomaterials Laboratory of Cardiovascular Institute/ Pulmonary and Critical Care, Department of Medicine, Stanford University, 1050 Arastradero Road, Palo Alto, CA, 94304, USA.
  • Inayathullah M; Advanced Drug Delivery and Regenerative Biomaterials Laboratory of Cardiovascular Institute/ Pulmonary and Critical Care, Department of Medicine, Stanford University, 1050 Arastradero Road, Palo Alto, CA, 94304, USA.
  • Morton M; Advanced Drug Delivery and Regenerative Biomaterials Laboratory of Cardiovascular Institute/ Pulmonary and Critical Care, Department of Medicine, Stanford University, 1050 Arastradero Road, Palo Alto, CA, 94304, USA; Children's Hospital of Orange County - UC Irvine School of Medicine, Department of
  • Pothineni VR; Advanced Drug Delivery and Regenerative Biomaterials Laboratory of Cardiovascular Institute/ Pulmonary and Critical Care, Department of Medicine, Stanford University, 1050 Arastradero Road, Palo Alto, CA, 94304, USA.
  • Kim K; Advanced Drug Delivery and Regenerative Biomaterials Laboratory of Cardiovascular Institute/ Pulmonary and Critical Care, Department of Medicine, Stanford University, 1050 Arastradero Road, Palo Alto, CA, 94304, USA; Department of Physiology, Gachon University College of Medicine, Incheon, 21999, So
  • Ahmed MS; Advanced Drug Delivery and Regenerative Biomaterials Laboratory of Cardiovascular Institute/ Pulmonary and Critical Care, Department of Medicine, Stanford University, 1050 Arastradero Road, Palo Alto, CA, 94304, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical
  • Babar MM; Advanced Drug Delivery and Regenerative Biomaterials Laboratory of Cardiovascular Institute/ Pulmonary and Critical Care, Department of Medicine, Stanford University, 1050 Arastradero Road, Palo Alto, CA, 94304, USA.
  • Rajadas J; Advanced Drug Delivery and Regenerative Biomaterials Laboratory of Cardiovascular Institute/ Pulmonary and Critical Care, Department of Medicine, Stanford University, 1050 Arastradero Road, Palo Alto, CA, 94304, USA. Electronic address: jayraja@stanford.edu.
Biomaterials ; 311: 122680, 2024 Jun 27.
Article en En | MEDLINE | ID: mdl-38959534
ABSTRACT
In the present study, we explored the development of a novel noninvasive liposomal drug delivery material for use in intranasal drug delivery applications in human diseases. We used drug entrapment into liposomal nanoparticle assembly to efficiently deliver the drugs to the nasal mucosa to be delivered to the brain. The naturally occurring flavonoid 7,8-dihydroxyflavone (7,8-DHF) has previously been shown to have beneficial effects in ameliorating Parkinson's disease (PD). We used both naturally occurring 7,8-DHF and the chemically modified form of DHF, the DHF-ME, to be used as a drug candidate for the treatment of PD and l-DOPA induced dyskinesia (LID), which is the debilitating side effect of l-DOPA therapy in PD. The ligand-protein interaction behavior for 7,8-DHF and 6,7-DHF-ME was found to be more effective with molecular docking and molecular stimulation studies of flavonoid compounds with TrkB receptor. Our study showed that 7,8-DHF delivered via intranasal route using a liposomal formulation ameliorated LID in hemiparkinsonian mice model when these mice were chronically administered with l-DOPA, which is the only current medication for relieving the clinical symptoms of PD. The present study also demonstrated that apart from reducing the LID, 7,8-DHF delivery directly to the brain via the intranasal route also corrected some long-term signaling adaptations involving ΔFosB and α Synuclein in the brain of dopamine (DA) depleted animals.
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Biomaterials Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Biomaterials Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos