Your browser doesn't support javascript.
loading
Subsurface Profiling of Ion Migration and Swelling in Conducting Polymer Actuators with Modulated Electrochemical Atomic Force Microscopy.
Bonafè, Filippo; Dong, Chaoqun; Malliaras, George G; Cramer, Tobias; Fraboni, Beatrice.
Afiliación
  • Bonafè F; Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy.
  • Dong C; Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge CB3 0FA, U.K.
  • Malliaras GG; Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge CB3 0FA, U.K.
  • Cramer T; Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy.
  • Fraboni B; Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy.
ACS Appl Mater Interfaces ; 16(28): 36727-36734, 2024 Jul 17.
Article en En | MEDLINE | ID: mdl-38972069
ABSTRACT
Understanding the dynamics of ion migration and volume change is crucial to studying the functionality and long-term stability of soft polymeric materials operating at liquid interfaces, but the subsurface characterization of swelling processes in these systems remains elusive. In this work, we address the issue using modulated electrochemical atomic force microscopy as a depth-sensitive technique to study electroswelling effects in the high-performance actuator material polypyrrole doped with dodecylbenzenesulfonate (PpyDBS). We perform multidimensional measurements combining local electroswelling and electrochemical impedance spectroscopies on microstructured PpyDBS actuators. We interpret charge accumulation in the polymeric matrix with a quantitative model, giving access to both the spatiotemporal dynamics of ion migration and the distribution of electroswelling in the electroactive polymer layer. The findings demonstrate a nonuniform distribution of the effective ionic volume in the PpyDBS layer depending on the film morphology and redox state. Our findings indicate that the highly efficient actuation performance of PpyDBS is caused by rearrangements of the polymer microstructure induced by charge accumulation in the soft polymeric matrix, increasing the effective ionic volume in the bulk of the electroactive film for up to two times the value measured in free water.
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: Italia

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: Italia