Your browser doesn't support javascript.
loading
Aluminum intercalation behaviours of {[Fe(Tp)(CN)3]2[M(H2O)2]} cyanido-bridged chain compounds in an ionic liquid electrolyte.
Li, Na; Li, Yanling; von Bardeleben, Hans Jurgen; Dambournet, Damien; Lescouëzec, Rodrigue.
Afiliación
  • Li N; Sorbonne Université, CNRS, Physico-chimie des Électrolytes et Nano-Systèmes Interfaciaux, PHENIX, F-75005 Paris, France. damien.dambournet@sorbonne-universite.fr.
  • Li Y; Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, ERMMES, F-75005 Paris, France. rodrigue.lescouezec@sorbonne-universite.fr.
  • von Bardeleben HJ; Sorbonne Université, CNRS, Physico-chimie des Électrolytes et Nano-Systèmes Interfaciaux, PHENIX, F-75005 Paris, France. damien.dambournet@sorbonne-universite.fr.
  • Dambournet D; Sorbonne Université, CNRS, Institut des Nanosciences de Paris, UMR 7588, F-75005 Paris, France.
  • Lescouëzec R; Sorbonne Université, CNRS, Physico-chimie des Électrolytes et Nano-Systèmes Interfaciaux, PHENIX, F-75005 Paris, France. damien.dambournet@sorbonne-universite.fr.
Dalton Trans ; 53(29): 12107-12118, 2024 Jul 23.
Article en En | MEDLINE | ID: mdl-38978469
ABSTRACT
As the development of aluminum-ion batteries is still in its infancy, researchers are still dedicated to exploring suitable host materials and investigating their aluminum intercalation behaviours. Here, a series of cyanido-bridged chain compounds with the formula {[FeIII(Tp)(CN)3]2[MII(H2O)2]}n (M = Ni, Co, Mn, Zn, Cu) are studied as cathode electrodes for aluminum-ion batteries with [EMIm]Cl-AlCl3 (1-ethyl-3-methylimidazolium chloride-AlCl3) ionic liquid as the electrolyte. The electrochemical properties suggested Fe3+/Fe2+ to be the redox-active couple during the aluminum intercalation and deintercalation processes of these compounds, and the observed maximum specific capacity obtained by the Fe-Co compound is 200 mA h g-1 despite the rapid specific capacity fading. To gain a deeper understanding of the capacity decay suffered by these compounds, further investigation was conducted to explore the evolution of compounds during the electrochemical measurements. It has been attributed to the following reasons 1. thermodynamic instability results in the transformation/damage of two of the chain structures (for the Fe-Ni and Fe-Co compounds) during heat treatment on electrodes, a crucial step in electrode preparation; 2. the acidic nature of the electrolyte triggers the destruction of the chain structure, with the appearance of partial reduction of Fe3+ to Fe2+, and a new interaction of the cyano group with aluminum; 3. the high charge density of inserted Al ions makes the chain structure suffer from structural damage during both the charging and discharging processes. The progressive accumulation of trapped intercalated ions hampers their involvement in the reaction, consequently decreasing electrochemical reversibility.

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Dalton Trans Asunto de la revista: QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Francia

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Dalton Trans Asunto de la revista: QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Francia