Ikaros sets the threshold for negative B-cell selection by regulation of the signaling strength of the AKT pathway.
Cell Commun Signal
; 22(1): 360, 2024 Jul 12.
Article
en En
| MEDLINE
| ID: mdl-38992657
ABSTRACT
Inhibitory phosphatases, such as the inositol-5-phosphatase SHIP1 could potentially contribute to B-cell acute lymphoblastic leukemia (B-ALL) by raising the threshold for activation of the autoimmunity checkpoint, allowing malignant cells with strong oncogenic B-cell receptor signaling to escape negative selection. Here, we show that SHIP1 is differentially expressed across B-ALL subtypes and that high versus low SHIP1 expression is associated with specific B-ALL subgroups. In particular, we found high SHIP1 expression in both, Philadelphia chromosome (Ph)-positive and ETV6-RUNX1-rearranged B-ALL cells. As demonstrated by targeted knockdown of SHIP1 by RNA interference, proliferation of B-ALL cells in vitro and their tumorigenic spread in vivo depended in part on SHIP1 expression. We investigated the regulation of SHIP1, as an important antagonist of the AKT signaling pathway, by the B-cell-specific transcription factor Ikaros. Targeted restoration of Ikaros and pharmacological inhibition of the antagonistic casein kinase 2, led to a strong reduction in SHIP1 expression and at the same time to a significant inhibition of AKT activation and cell growth. Importantly, the tumor suppressive function of Ikaros was enhanced by a SHIP1-dependent additive effect. Furthermore, our study shows that all three AKT isoforms contribute to the pro-mitogenic and anti-apoptotic signaling in B-ALL cells. Conversely, hyperactivation of a single AKT isoform is sufficient to induce negative selection by increased oxidative stress. In summary, our study demonstrates the regulatory function of Ikaros on SHIP1 expression in B-ALL and highlights the relevance of sustained SHIP1 expression to prevent cells with hyperactivated PI3K/AKT/mTOR signaling from undergoing negative selection.
Palabras clave
Texto completo:
1
Bases de datos:
MEDLINE
Asunto principal:
Linfocitos B
/
Transducción de Señal
/
Proteínas Proto-Oncogénicas c-akt
/
Factor de Transcripción Ikaros
/
Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas
Límite:
Animals
/
Humans
Idioma:
En
Revista:
Cell Commun Signal
Año:
2024
Tipo del documento:
Article
País de afiliación:
Alemania