Your browser doesn't support javascript.
loading
Interactive impact of landscape composition and configuration on river water quality under different spatial and seasonal scales.
Pei, Wei; Xu, Qiyu; Lei, Qiuliang; Du, Xinzhong; Luo, Jiafa; Qiu, Weiwen; An, Miaoying; Zhang, Tianpeng; Liu, Hongbin.
Afiliación
  • Pei W; State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Bei
  • Xu Q; State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Bei
  • Lei Q; State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Bei
  • Du X; State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Bei
  • Luo J; AgResearch Ruakura, Hamilton 3240, New Zealand.
  • Qiu W; The New Zealand Institute for Plant & Food Research Limited, Private Bag, 4704 Christchurch, New Zealand.
  • An M; State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Bei
  • Zhang T; State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Bei
  • Liu H; State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Bei
Sci Total Environ ; 950: 175027, 2024 Nov 10.
Article en En | MEDLINE | ID: mdl-39059653
ABSTRACT
Currently, the comprehensive effect of the landscape pattern on river water quality has been widely studied. However, the interactive influences of landscape type, namely composition (COM) and configuration (CON) on water quality variations, as well as the specific landscape driving types affecting water quality variations under different spatial and seasonal scales remain unclear. To further improve the effectiveness of landscape planning and water quality protection, this study collected monthly water samples from the Fengyu River Watershed in southwestern China from 2018 to 2021, the Biota-Environment Matching Analysis (Bioenv) was used to identify key metrics representing landscape COM and CON, respectively. Then, the multiple regression (MLR) and redundancy analysis (RDA) were used to explore the relationship between these landscape metrics and water quality. In addition, this study used a variation partitioning analysis (VPA) to quantify the interactive and independent influence of landscape COM and CON on water quality. Results revealed that construction land and the Shannon's diversity index (SHDI) were the key metrics of landscape COM and CON, respectively, for predicting water pollution concentrations. The interactive contribution was particularly sensitive to seasonal changes in riparian buffer areas (27.66 % to 48.73 %), while it remained relatively stable at the sub-watershed scale (38.22 % to 40.51 %). Moreover, landscape CON had a higher independent contribution to variations on water quality across most spatio-temporal scales. Overall, identifying and managing key landscape type and consequential metrics, matching with the spatio-temporal scale, holds promise for enhancing water quality conservation. Furthermore, this study provides valuable insights into the identification and selection of core landscape metrics.
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Sci Total Environ Año: 2024 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Sci Total Environ Año: 2024 Tipo del documento: Article