Your browser doesn't support javascript.
loading
Imaging Single Prussian Blue Nanoparticles with Extraordinary Low-Spin Iron Capacity.
Wang, Si-Cong; Ma, Junjie; Wang, Xinyue; Xie, Ruo-Chen; Wang, Wei.
Afiliación
  • Wang SC; State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (Chem BIC), School of Chemistry and Chemical Engineering, Nanjing University. Nanjing, Jiangsu 210023, China.
  • Ma J; State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (Chem BIC), School of Chemistry and Chemical Engineering, Nanjing University. Nanjing, Jiangsu 210023, China.
  • Wang X; State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (Chem BIC), School of Chemistry and Chemical Engineering, Nanjing University. Nanjing, Jiangsu 210023, China.
  • Xie RC; State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (Chem BIC), School of Chemistry and Chemical Engineering, Nanjing University. Nanjing, Jiangsu 210023, China.
  • Wang W; State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (Chem BIC), School of Chemistry and Chemical Engineering, Nanjing University. Nanjing, Jiangsu 210023, China.
Anal Chem ; 96(32): 13096-13102, 2024 Aug 13.
Article en En | MEDLINE | ID: mdl-39090997
ABSTRACT
In attempts to obtain high-capacity Prussian blue nanomaterials, current efforts are predominantly focused on the particle-ensemble-level understanding of their structure-activity relationships. Complementarily, it would be insightful to screen out extraordinary individuals from the nanoparticle population. Using a simple and efficient technique of bright-field microscopy, this work enables, for the first time, quantitative characterization of the overall two-redox-center electrochemistry of single Prussian blue nanoparticles many at a time. Quantitative optical voltammograms with little interference from solvent breakdown and non-Faradaic electrode charging/discharging are extracted for each single nanoparticle, revealing clear heterogeneity among them. On this basis, the microscopic method allows a detailed comparative analysis between the two redox-active sites. It is found that while the synthesized nanoparticles show a similar specific capacity of the high-spin (HS-Fe) sites with STD/mean = 30%, most individual nanoparticles exhibit monodispersedly small capacities of the low-spin iron (LS-Fe) sites, only about 17±1 of the HS-Fe capacity. Most importantly, it is discovered that there is always a small fraction (∼8%) of the single nanoparticles showing an impressively tripled LS-Fe capacity. Facilitated by optical imaging, the discovery of this easily overlooked extraordinary subpopulation confers alternative opportunities for targeted efforts for material chemists to improve synthesis and material design based on these unusual individuals, which in turn implies the general significance of nanoparticle screening.

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Anal Chem Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Anal Chem Año: 2024 Tipo del documento: Article País de afiliación: China