Your browser doesn't support javascript.
loading
Harnessing large language models' zero-shot and few-shot learning capabilities for regulatory research.
Meshkin, Hamed; Zirkle, Joel; Arabidarrehdor, Ghazal; Chaturbedi, Anik; Chakravartula, Shilpa; Mann, John; Thrasher, Bradlee; Li, Zhihua.
Afiliación
  • Meshkin H; Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, WO Bldg 64, 10903 New Hampshire Ave, Silver Spring, MD 20993, United States.
  • Zirkle J; Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, WO Bldg 64, 10903 New Hampshire Ave, Silver Spring, MD 20993, United States.
  • Arabidarrehdor G; Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, WO Bldg 64, 10903 New Hampshire Ave, Silver Spring, MD 20993, United States.
  • Chaturbedi A; Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, WO Bldg 64, 10903 New Hampshire Ave, Silver Spring, MD 20993, United States.
  • Chakravartula S; Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, WO Bldg 64, 10903 New Hampshire Ave, Silver Spring, MD 20993, United States.
  • Mann J; Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, WO Bldg 64, 10903 New Hampshire Ave, Silver Spring, MD 20993, United States.
  • Li Z; Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, WO Bldg 64, 10903 New Hampshire Ave, Silver Spring, MD 20993, United States.
Brief Bioinform ; 25(5)2024 Jul 25.
Article en En | MEDLINE | ID: mdl-39177261
ABSTRACT
Large language models (LLMs) are sophisticated AI-driven models trained on vast sources of natural language data. They are adept at generating responses that closely mimic human conversational patterns. One of the most notable examples is OpenAI's ChatGPT, which has been extensively used across diverse sectors. Despite their flexibility, a significant challenge arises as most users must transmit their data to the servers of companies operating these models. Utilizing ChatGPT or similar models online may inadvertently expose sensitive information to the risk of data breaches. Therefore, implementing LLMs that are open source and smaller in scale within a secure local network becomes a crucial step for organizations where ensuring data privacy and protection has the highest priority, such as regulatory agencies. As a feasibility evaluation, we implemented a series of open-source LLMs within a regulatory agency's local network and assessed their performance on specific tasks involving extracting relevant clinical pharmacology information from regulatory drug labels. Our research shows that some models work well in the context of few- or zero-shot learning, achieving performance comparable, or even better than, neural network models that needed thousands of training samples. One of the models was selected to address a real-world issue of finding intrinsic factors that affect drugs' clinical exposure without any training or fine-tuning. In a dataset of over 700 000 sentences, the model showed a 78.5% accuracy rate. Our work pointed to the possibility of implementing open-source LLMs within a secure local network and using these models to perform various natural language processing tasks when large numbers of training examples are unavailable.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Procesamiento de Lenguaje Natural Límite: Humans Idioma: En Revista: Brief Bioinform Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Procesamiento de Lenguaje Natural Límite: Humans Idioma: En Revista: Brief Bioinform Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos