Your browser doesn't support javascript.
loading
Optimization of indirect wastewater characterization using led spectrophotometry: a comparative analysis of regression, scaling, and dimensionality reduction methods.
Carreres-Prieto, Daniel; Fernandez-Blanco, Enrique; Rivero, Daniel; Rabuñal, Juan R; Anta, Jose; García, Juan T.
Afiliación
  • Carreres-Prieto D; Department of Engineering and Applied Techniques, Centro Universitario de la Defensa, Universidad Politécnica de Cartagena, C/ Coronel López Peña S/N, Base Aérea de San Javier, Santiago de La Ribera, 30720, Murcia, Spain. daniel.carreres@cud.upct.es.
  • Fernandez-Blanco E; Department of Computer Science and Information Technologies, Universidade da Coruña, CITIC, 15071, A Coruña, Spain.
  • Rivero D; Department of Computer Science and Information Technologies, Universidade da Coruña, CITIC, 15071, A Coruña, Spain.
  • Rabuñal JR; Artificial Neural Networks and Adaptative Systems Research Group (RNASA) and Centre of Technological Innovation in Construction and Civil Engineering (CITEEC), University of A Coruña, 15071, A Coruña, Spain.
  • Anta J; Water and Environmental Engineering Research Team (GEAMA), Civil Engineering School, Universidade da Coruña, CITEEC, 15071, A Coruña, Spain.
  • García JT; Department of Mining and Civil Engineering, Universidad Politécnica de Cartagena, 30202, Cartagena, Spain.
Environ Sci Pollut Res Int ; 31(42): 54481-54501, 2024 Sep.
Article en En | MEDLINE | ID: mdl-39196326
ABSTRACT
LED spectrophotometry is a robust technique for the indirect characterization of wastewater pollutant load through correlation modeling. To tackle this issue, a dataset with 1300 samples was collected, from both raw and treated wastewater from 45 wastewater treatment plants in Spain and Chile collected over 4 years. The type of regressor, scaling, and dimensionality reduction technique and nature of the data play crucial roles in the performance of the processing pipeline. Eighty-four pipelines were tested through exhaustive experimentation resulting from the combination of 7 regression techniques, 3 scaling methods, and 4 possible dimensional reductions. Those combinations were tested on the prediction of chemical oxygen demand (COD) and total suspended solids (TSS). Each pipeline underwent a tenfold cross-validation on 15 sub-datasets derived from the original dataset, accounting for variations in plants and wastewater types. The results point to the normalization of the data followed by a conversion through the PCA to finally apply a Random Forest Regressor as the combination which stood out These results highlight the importance of modeling strategies in wastewater management using techniques such as LED spectrophotometry.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Espectrofotometría / Aguas Residuales País/Región como asunto: America do sul / Chile / Europa Idioma: En Revista: Environ Sci Pollut Res Int Asunto de la revista: SAUDE AMBIENTAL / TOXICOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: España

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Espectrofotometría / Aguas Residuales País/Región como asunto: America do sul / Chile / Europa Idioma: En Revista: Environ Sci Pollut Res Int Asunto de la revista: SAUDE AMBIENTAL / TOXICOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: España