Your browser doesn't support javascript.
loading
Quantitative proteomic analysis reveals Ga(III) polypyridyl catecholate complexes disrupt Aspergillus fumigatus mitochondrial function.
Piatek, Magdalena; Grassiri, Brunella; O'Ferrall, Lewis More; Piras, Anna Maria; Batoni, Giovanna; Esin, Semih; O'Connor, Christine; Griffith, Darren; Healy, Anne Marie; Kavanagh, Kevin.
Afiliación
  • Piatek M; Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland. magdalena.piatek@mu.ie.
  • Grassiri B; SSPC, the Science Foundation Ireland Research Centre for Pharmaceuticals, Limerick, Ireland. magdalena.piatek@mu.ie.
  • O'Ferrall LM; Department of Pharmacy, University of Pisa, via Bonanno 33, Pisa, Italy.
  • Piras AM; SSPC, the Science Foundation Ireland Research Centre for Pharmaceuticals, Limerick, Ireland.
  • Batoni G; School of Food Science & Environmental Health, Technological University Dublin, Dublin 7, Ireland.
  • Esin S; Department of Pharmacy, University of Pisa, via Bonanno 33, Pisa, Italy.
  • O'Connor C; Department of Translational Research and new Technologies in Medicine and Surgery, University of Pisa, via San Zeno 37, Pisa, Italy.
  • Griffith D; Department of Translational Research and new Technologies in Medicine and Surgery, University of Pisa, via San Zeno 37, Pisa, Italy.
  • Healy AM; School of Food Science & Environmental Health, Technological University Dublin, Dublin 7, Ireland.
  • Kavanagh K; SSPC, the Science Foundation Ireland Research Centre for Pharmaceuticals, Limerick, Ireland.
J Biol Inorg Chem ; 2024 Sep 23.
Article en En | MEDLINE | ID: mdl-39313590
ABSTRACT
Infections caused by the airborne fungal pathogen, Aspergillus fumigatus, are increasing in severity due to growing numbers of immunocompromised individuals and the increasing incidence of antifungal drug resistance, exacerbating treatment challenges. Gallium has proven to be a strong candidate in the fight against microbial pathogens due to its iron-mimicking capability and substitution of Ga(III) in place of Fe(III), disrupting iron-dependent pathways. Since the antimicrobial properties of 2,2'-bipyridine and derivatives have been previously reported, we assessed the in vitro activity and proteomic effects of a recently reported heteroleptic Ga(III) polypyridyl catecholate compound against A. fumigatus. This compound has demonstrated promising growth-inhibition and impact on the A. fumigatus proteome compared to untreated controls. Proteins associated with DNA replication and repair mechanisms along with lipid metabolism and the oxidative stress responses were elevated in abundance compared to control. Crucially, a large number of mitochondrial proteins were reduced in abundance. Respiration is an important source of energy to fuel metabolic processes required for growth, survival and virulence, the disruption of which may be a viable strategy for the treatment of microbial infections.
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: J Biol Inorg Chem Asunto de la revista: BIOQUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Irlanda

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: J Biol Inorg Chem Asunto de la revista: BIOQUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Irlanda