Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nanomedicine ; 24: 102136, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31843659

RESUMO

Quatsomes are outstanding new lipid-based nanovesicles that are highly homogeneous and stable in different media for years, but the composition must be carefully chosen to avoid any potentially toxic side effects in in vivo applications. To this end, we have developed and studied a novel type of Quatsomes composed of cholesterol and myristalkonium chloride (MKC), the latter being extensively used as antimicrobial preservative in many ophthalmic and parenteral formulations on the EU and USA market. We have synthesized these novel MKC-Quatsomes in different media that are suitable for parenteral administration, and confirmed their stability in these media for 18 months, as well as the stability in human serum for 24 hours. Biodistribution assays were performed after intravenous injection of fluorescently labeled MKC-Quatsomes in live mice bearing xenografted colorectal tumors, showing nanovesicle accumulation in tumors, liver, spleen, and kidneys. No histological alteration or toxicity was observed in any of these organs.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Animais , Colesterol/química , Cromatografia Líquida de Alta Pressão , Humanos , Camundongos , Modelos Teóricos , Nanomedicina/métodos
2.
FASEB J ; 29(2): 464-76, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25359494

RESUMO

Although all KRas (protein that in humans is encoded by the KRas gene) point mutants are considered to have a similar prognostic capacity, their transformation and tumorigenic capacities vary widely. We compared the metastatic efficiency of KRas G12V (Kirsten rat sarcoma viral oncogene homolog with valine mutation at codon 12) and KRas G13D (Kirsten rat sarcoma viral oncogene homolog with aspartic mutation at codon 13) oncogenes in an orthotopic colorectal cancer (CRC) model. Following subcutaneous preconditioning, recombinant clones of the SW48 CRC cell line [Kras wild-type (Kras WT)] expressing the KRas G12V or KRas G13D allele were microinjected in the mouse cecum. The percentage of animals developing lymph node metastasis was higher in KRas G12V than in KRas G13D mice. Microscopic, macroscopic, and visible lymphatic foci were 1.5- to 3.0-fold larger in KRas G12V than in KRas G13D mice (P < 0.05). In the lung, only microfoci were developed in both groups. KRas G12V primary tumors had lower apoptosis (7.0 ± 1.2 vs. 7.4 ± 1.0 per field, P = 0.02), higher tumor budding at the invasion front (1.2 ± 0.2 vs. 0.6 ± 0.1, P = 0.04), and a higher percentage of C-X-C chemokine receptor type 4 (CXCR4)-overexpressing intravasated tumor emboli (49.8 ± 9.4% vs. 12.8 ± 4.4%, P < 0.001) than KRas G13D tumors. KRas G12V primary tumors showed Akt activation, and ß5 integrin, vascular endothelial growth factor A (VEGFA), and Serpine-1 overexpression, whereas KRas G13D tumors showed integrin ß1 and angiopoietin 2 (Angpt2) overexpression. The increased cell survival, invasion, intravasation, and specific molecular regulation observed in KRas G12V tumors is consistent with the higher aggressiveness observed in patients with CRC expressing this oncogene.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Angiopoietina-2/metabolismo , Animais , Apoptose , Linhagem Celular Tumoral , Sobrevivência Celular , Feminino , Humanos , Integrina beta1/metabolismo , Metástase Linfática , Camundongos , Camundongos Nus , Mutação , Invasividade Neoplásica , Metástase Neoplásica , Proteínas de Ligação a RNA/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
3.
Nanomedicine ; 12(5): 1241-51, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26949165

RESUMO

A single chain polypeptide containing the low density lipoprotein receptor (LDLR) ligand Seq-1 with blood-brain barrier (BBB) crossing activity has been successfully modified by conventional genetic engineering to self-assemble into stable protein-only nanoparticles of 30nm. The nanoparticulate presentation dramatically enhances in vitro, LDLR-dependent cell penetrability compared to the parental monomeric version, but the assembled protein does not show any enhanced brain targeting upon systemic administration. While the presentation of protein drugs in form of nanoparticles is in general advantageous regarding correct biodistribution, this principle might not apply to brain targeting that is hampered by particular bio-physical barriers. Irrespective of this fact, which is highly relevant to the nanomedicine of central nervous system, engineering the cationic character of defined protein stretches is revealed here as a promising and generic approach to promote the controlled oligomerization of biologically active protein species as still functional, regular nanoparticles.


Assuntos
Barreira Hematoencefálica , Sistemas de Liberação de Medicamentos , Nanopartículas , Peptídeos , Humanos , Receptores de LDL , Distribuição Tecidual
4.
Nanomedicine ; 12(7): 1987-1996, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27085904

RESUMO

Unliganded drug-nanoconjugates accumulate passively in the tumor whereas liganded nanoconjugates promote drug internalization in tumor cells via endocytosis and increase antitumor efficacy. Whether or not tumor cell internalization associates with enhanced tumor uptake is still under debate. We here compared tumor uptake of T22-GFP-H6, a liganded protein carrier targeting the CXCR4 receptor, and the unliganded GFP-H6 carrier in subcutaneous and metastatic colorectal cancer models. T22-GFP-H6 had a higher tumor uptake in primary tumor and metastatic foci than GFP-H6, with no biodistribution or toxicity on normal tissues. T22-GFP-H6 was detected in target CXCR4+ tumor cell cytosol whereas GFP-H6 was detected in tumor stroma. SDF1-α co-administration switched T22-GFP-H6 internalization from CXCR4+ tumor epithelial cells to the stroma. Therefore, the incorporation of a targeting ligand promotes selective accumulation of the nanocarrier inside target tumor cells while increasing whole tumor uptake in a CXCR4-dependent manner, validating T22-GFP-H6 as a CXCR4-targeted drug carrier.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Receptores CXCR4 , Portadores de Fármacos , Endocitose , Humanos , Ligantes , Nanotecnologia , Peptídeos , Transdução de Sinais , Distribuição Tecidual
5.
Adv Sci (Weinh) ; 11(21): e2309427, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38501900

RESUMO

Developing time-sustained drug delivery systems is a main goal in innovative medicines. Inspired by the architecture of secretory granules from the mammalian endocrine system it has generated non-toxic microscale amyloid materials through the coordination between divalent metals and poly-histidine stretches. Like their natural counterparts that keep the functionalities of the assembled protein, those synthetic structures release biologically active proteins during a slow self-disintegration process occurring in vitro and upon in vivo administration. Being these granules formed by a single pure protein species and therefore, chemically homogenous, they act as highly promising time-sustained drug delivery systems. Despite their enormous clinical potential, the nature of the clustering process and the quality of the released protein have been so far neglected issues. By using diverse polypeptide species and their protein-only oligomeric nanoscale versions as convenient models, a conformational rearrangement and a stabilization of the building blocks during their transit through the secretory granules, being the released material structurally distinguishable from the original source is proved here. This fact indicates a dynamic nature of secretory amyloids that act as conformational arrangers rather than as plain, inert protein-recruiting/protein-releasing granular depots.


Assuntos
Amiloide , Amiloide/metabolismo , Amiloide/química , Humanos , Vesículas Secretórias/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Conformação Proteica
6.
ACS Appl Mater Interfaces ; 15(33): 39167-39175, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37614001

RESUMO

Among bio-inspired protein materials, secretory protein microparticles are of clinical interest as self-contained, slow protein delivery platforms that mimic secretory granules of the human endocrine system, in which the protein is both the drug and the scaffold. Upon subcutaneous injection, their progressive disintegration results in the sustained release of the building block polypeptides, which reach the bloodstream for systemic distribution and subsequent biological effects. Such entities are easily fabricated in vitro by Zn-assisted cross-molecular coordination of histidine residues. Using cationic Zn for the assembly of selected pure protein species and in the absence of any heterologous holding material, these granules are expected to be nontoxic and therefore adequate for different clinical uses. However, such presumed biosafety has not been so far confirmed and the potential protein dosage threshold not probed yet. By selecting the receptor binding domain (RBD) from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein as a model protein and using a mouse lab model, we have explored the toxicity of RBD-made secretory granules at increasing doses up to ∼100 mg/kg of animal weight. By monitoring body weight and biochemical blood markers and through the histological scrutiny of main tissues and organs, we have not observed systemic toxicity. Otherwise, the bioavailability of the material was demonstrated by the induction of specific antibody responses. The presented data confirm the intrinsic biosafety of artificial secretory granules made by recombinant proteins and prompt their further clinical development as self-contained and dynamic protein reservoirs.


Assuntos
COVID-19 , Contenção de Riscos Biológicos , Animais , Humanos , Preparações de Ação Retardada/farmacologia , SARS-CoV-2 , Próteses e Implantes , Modelos Animais de Doenças
7.
Cancers (Basel) ; 15(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36612081

RESUMO

Patients with advanced endometrial cancer (EC) show poor outcomes. Thus, the development of new therapeutic approaches to prevent metastasis development in high-risk patients is an unmet need. CXCR4 is overexpressed in EC tumor tissue, epitomizing an unexploited therapeutic target for this malignancy. The in vitro antitumor activity of two CXCR4-targeted nanoparticles, including either the C. diphtheriae (T22-DITOX-H6) or P. aeruginosa (T22-PE24-H6) toxin, was evaluated using viability assays. Apoptotic activation was assessed by DAPI and caspase-3 and PARP cleavage in cell blocks. Both nanotoxins were repeatedly administrated to a subcutaneous EC mouse model, whereas T22-DITOX-H6 was also used in a highly metastatic EC orthotopic model. Tumor burden was assessed through bioluminescence, while metastatic foci and toxicity were studied using histological or immunohistochemical analysis. We found that both nanotoxins exerted a potent antitumor effect both in vitro and in vivo via apoptosis and extended the survival of nanotoxin-treated mice without inducing any off-target toxicity. Repeated T22-DITOX-H6 administration in the metastatic model induced a dramatic reduction in tumor burden while significantly blocking peritoneal, lung and liver metastasis without systemic toxicity. Both nanotoxins, but especially T22-DITOX-H6, represent a promising therapeutic alternative for EC patients that have a dismal prognosis and lack effective therapies.

8.
Acta Pharm Sin B ; 12(5): 2578-2591, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35646535

RESUMO

Loco-regional recurrences and distant metastases represent the main cause of head and neck squamous cell carcinoma (HNSCC) mortality. The overexpression of chemokine receptor 4 (CXCR4) in HNSCC primary tumors associates with higher risk of developing loco-regional recurrences and distant metastases, thus making CXCR4 an ideal entry pathway for targeted drug delivery. In this context, our group has generated the self-assembling protein nanocarrier T22-GFP-H6, displaying multiple T22 peptidic ligands that specifically target CXCR4. This study aimed to validate T22-GFP-H6 as a suitable nanocarrier to selectively deliver cytotoxic agents to CXCR4+ tumors in a HNSCC model. Here we demonstrate that T22-GFP-H6 selectively internalizes in CXCR4+ HNSCC cells, achieving a high accumulation in CXCR4+ tumors in vivo, while showing negligible nanocarrier distribution in non-tumor bearing organs. Moreover, this T22-empowered nanocarrier can incorporate bacterial toxin domains to generate therapeutic nanotoxins that induce cell death in CXCR4-overexpressing tumors in the absence of histological alterations in normal organs. Altogether, these results show the potential use of this T22-empowered nanocarrier platform to incorporate polypeptidic domains of choice to selectively eliminate CXCR4+ cells in HNSCC. Remarkably, to our knowledge, this is the first study testing targeted protein-only nanoparticles in this cancer type, which may represent a novel treatment approach for HNSCC patients.

9.
Drug Deliv ; 29(1): 1384-1397, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35532120

RESUMO

Colorectal cancer (CRC) remains the third cause of cancer-related mortality in Western countries, metastases are the main cause of death. CRC treatment remains limited by systemic toxicity and chemotherapy resistance. Therefore, nanoparticle-mediated delivery of cytotoxic agents selectively to cancer cells represents an efficient strategy to increase the therapeutic index and overcome drug resistance. We have developed the T22-PE24-H6 therapeutic protein-only nanoparticle that incorporates the exotoxin A from Pseudomonas aeruginosa to selectively target CRC cells because of its multivalent ligand display that triggers a high selectivity interaction with the CXCR4 receptor overexpressed on the surface of CRC stem cells. We here observed a CXCR4-dependent cytotoxic effect for T22-PE24-H6, which was not mediated by apoptosis, but instead capable of inducing a time-dependent and sequential activation of pyroptotic markers in CRC cells in vitro. Next, we demonstrated that repeated doses of T22-PE24-H6 inhibit tumor growth in a subcutaneous CXCR4+ CRC model, also through pyroptotic activation. Most importantly, this nanoparticle also blocked the development of lymphatic and hematogenous metastases, in a highly aggressive CXCR4+ SW1417 orthotopic CRC model, in the absence of systemic toxicity. This targeted drug delivery approach supports for the first time the clinical relevance of inducing GSDMD-dependent pyroptosis, a cell death mechanism alternative to apoptosis, in CRC models, leading to the selective elimination of CXCR4+ cancer stem cells, which are associated with resistance, metastases and anti-apoptotic upregulation.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Proteínas de Ligação a Fosfato , Proteínas Citotóxicas Formadoras de Poros , Piroptose , Receptores CXCR4 , Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Humanos , Metástase Neoplásica/prevenção & controle , Proteínas de Ligação a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Receptores CXCR4/metabolismo , Receptores CXCR4/uso terapêutico , Transdução de Sinais
10.
Pharmaceutics ; 14(4)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35456719

RESUMO

Loco-regional recurrences and metastasis represent the leading causes of death in head and neck squamous cell carcinoma (HNSCC) patients, highlighting the need for novel therapies. Chemokine receptor 4 (CXCR4) has been related to loco-regional and distant recurrence and worse patient prognosis. In this regard, we developed a novel protein nanoparticle, T22-DITOX-H6, aiming to selectively deliver the diphtheria toxin cytotoxic domain to CXCR4+ HNSCC cells. The antimetastatic effect of T22-DITOX-H6 was evaluated in vivo in an orthotopic mouse model. IVIS imaging system was utilized to assess the metastatic dissemination in the mouse model. Immunohistochemistry and histopathological analyses were used to study the CXCR4 expression in the cancer cells, to evaluate the effect of the nanotoxin treatment, and its potential off-target toxicity. In this study, we report that CXCR4+ cancer cells were present in the invasive tumor front in an orthotopic mouse model. Upon repeated T22-DITOX-H6 administration, the number of CXCR4+ cancer cells was significantly reduced. Similarly, nanotoxin treatment effectively blocked regional and distant metastatic dissemination in the absence of systemic toxicity in the metastatic HNSCC mouse model. The repeated administration of T22-DITOX-H6 clearly abrogates tumor invasiveness and metastatic dissemination without inducing any off-target toxicity. Thus, T22-DITOX-H6 holds great promise for the treatment of CXCR4+ HNSCC patients presenting worse prognosis.

11.
J Exp Clin Cancer Res ; 41(1): 49, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35120582

RESUMO

BACKGROUND: Therapy resistance, which leads to the development of loco-regional relapses and distant metastases after treatment, constitutes one of the major problems that head and neck squamous cell carcinoma (HNSCC) patients currently face. Thus, novel therapeutic strategies are urgently needed. Targeted drug delivery to the chemokine receptor 4 (CXCR4) represents a promising approach for HNSCC management. In this context, we have developed the self-assembling protein nanotoxins T22-PE24-H6 and T22-DITOX-H6, which incorporate the de-immunized catalytic domain of Pseudomonas aeruginosa (PE24) exotoxin A and the diphtheria exotoxin (DITOX) domain, respectively. Both nanotoxins contain the T22 peptide ligand to specifically target CXCR4-overexpressing HNSCC cells. In this study, we evaluate the potential use of T22-PE24-H6 and T22-DITOX-H6 nanotoxins for the treatment of HNSCC. METHODS: T22-PE24-H6 and T22-DITOX-H6 CXCR4-dependent cytotoxic effect was evaluated in vitro in two different HNSCC cell lines. Both nanotoxins cell death mechanisms were assessed in HNSCC cell lines by phase-contrast microscopy, AnnexinV/ propidium iodide (PI) staining, lactate dehydrogenase (LDH) release assays, and western blotting. Nanotoxins antitumor effect in vivo was studied in a CXCR4+ HNSCC subcutaneous mouse model. Immunohistochemistry, histopathology, and toxicity analyses were used to evaluate both nanotoxins antitumor effect and possible treatment toxicity. GSMDE and CXCR4 expression in HNSCC patient tumor samples was also assessed by immunohistochemical staining. RESULTS: First, we found that both nanotoxins exhibit a potent CXCR4-dependent cytotoxic effect in vitro. Importantly, nanotoxin treatment triggered caspase-3/Gasdermin E (GSDME)-mediated pyroptosis. The activation of this alternative cell death pathway that differs from traditional apoptosis, becomes a promising strategy to bypass therapy resistance. In addition, T22-PE24-H6 and T22-DITOX-H6 displayed a potent antitumor effect in the absence of systemic toxicity in a CXCR4+ subcutaneous HNSCC mouse model. Lastly, GSDME was found to be overexpressed in tumor tissue from HNSCC patients, highlighting the relevance of this strategy. CONCLUSIONS: Altogether, our results show that T22-PE24-H6 and T22-DITOX-H6 represent a promising therapy for HNSCC patients. Remarkably, this is the first study showing that both nanotoxins are capable of activating caspase-3/GSDME-dependent pyroptosis, opening a novel avenue for HNSCC treatment.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Nanotecnologia/métodos , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Piroptose/genética , Receptores CXCR4/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Animais , Feminino , Humanos , Camundongos , Camundongos Nus
12.
Biomed Pharmacother ; 150: 112940, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35421785

RESUMO

High rates of relapsed and refractory diffuse large B-cell lymphoma (DLBCL) patients and life-threatening side effects associated with immunochemotherapy make an urgent need to develop new therapies for DLBCL patients. Immunotoxins seem very potent anticancer therapies but their use is limited because of their high toxicity. Accordingly, the self-assembling polypeptidic nanoparticle, T22-DITOX-H6, incorporating the diphtheria toxin and targeted to CXCR4 receptor, which is overexpressed in DLBCL cells, could offer a new strategy to selectively eliminate CXCR4+ DLBCL cells without adverse effects. In these terms, our work demonstrated that T22-DITOX-H6 showed high specific cytotoxicity towards CXCR4+ DLBCL cells at the low nanomolar range, which was dependent on caspase-3 cleavage, PARP activation and an increase of cells in early/late apoptosis. Repeated nanoparticle administration induced antineoplastic effect, in vivo and ex vivo, in a disseminated immunocompromised mouse model generated by intravenous injection of human luminescent CXCR4+ DLBCL cells. Moreover, T22-DITOX-H6 inhibited tumor growth in a subcutaneous immunocompetent mouse model bearing mouse CXCR4+ lymphoma cells in the absence of alterations in the hemogram, liver or kidney injury markers or on-target or off-target organ histology. Thus, T22-DITOX-H6 demonstrates a selective cytotoxicity towards CXCR4+ DLBCL cells without the induction of toxicity in non-lymphoma infiltrated organs nor hematologic toxicity.


Assuntos
Antineoplásicos , Linfoma Difuso de Grandes Células B , Nanopartículas , Receptores CXCR4 , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Toxina Diftérica/farmacologia , Modelos Animais de Doenças , Xenoenxertos , Humanos , Imunocompetência , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/imunologia , Linfoma Difuso de Grandes Células B/metabolismo , Camundongos , Receptores CXCR4/metabolismo
13.
Biomaterials ; 280: 121258, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34847435

RESUMO

Current therapy in acute myeloid leukemia (AML) is based on chemotherapeutic drugs administered at high doses, lacking targeting selectivity and displaying poor therapeutic index because of severe adverse effects. Here, we develop a novel nanoconjugate that combines a self-assembled, multivalent protein nanoparticle, targeting the CXCR4 receptor, with an Oligo-Ara-C prodrug, a pentameric form of Ara-C, to highly increase the delivered payload to target cells. This 13.4 nm T22-GFP-H6-Ara-C nanoconjugate selectively eliminates CXCR4+ AML cells, which are protected by its anchoring to the bone marrow (BM) niche, being involved in AML progression and chemotherapy resistance. This nanoconjugate shows CXCR4-dependent internalization and antineoplastic activity in CXCR4+ AML cells in vitro. Moreover, repeated T22-GFP-H6-Ara-C administration selectively eliminates CXCR4+ leukemic cells in BM, spleen and liver. The leukemic dissemination blockage induced by T22-GFP-H6-Ara-C is significantly more potent than buffer or Oligo-Ara-C-treated mice, showing no associated on-target or off-target toxicity and, therefore, reaching a highly therapeutic window. In conclusion, T22-GFP-H6-Ara-C exploits its 11 ligands-multivalency to enhance target selectivity, while the Oligo-Ara-C prodrug multimeric form increases 5-fold its payload. This feature combination offers an alternative nanomedicine with higher activity and greater tolerability than current intensive or non-intensive chemotherapy for AML patients.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Pró-Fármacos , Animais , Antineoplásicos/farmacologia , Citarabina/uso terapêutico , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Camundongos , Nanoconjugados/uso terapêutico , Pró-Fármacos/uso terapêutico
14.
Am J Pathol ; 177(4): 2067-79, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20813963

RESUMO

Metastases are frequently found during colorectal cancer diagnoses and are the main determinants of clinical outcome. The lack of reliable models of metastases has precluded their mechanistic understanding and our capacity to improve outcome. We studied the effect of E-cadherin and Snail1 expression on metastagenesis in a colorectal cancer model. We microinjected SW480-ADH human colorectal cancer cells, transfected with an empty vector (Mock) or overexpressing Snail1 (Snail1(OE)) or E-cadherin (E-cadherin(OE)), in the ceca of nude mice (eight per group) and analyzed tumor growth, dissemination, and Snail1, E-cadherin, ß-catenin, and Presenilin1 (PS1) expression in local tumors and/or metastatic foci. Snail1(OE) cells disseminated only to lymph nodes, whereas Mock or E-cadherin(OE) cells spread to lymph nodes and peritoneums. Peritoneal tumor foci developed by E-cadherin(OE) cells presented an increase in E-cadherin proteolysis and nuclear translocation, and enhanced expression of proteolytically active PS1, which was linked to increased tumor growth and shortened mouse survival. Interestingly, local and lymph node tumors in mice bearing E-cadherin(OE) cells overexpressed E-cadherin, but they did not show E-cadherin proteolysis or nuclear translocation. Remarkably, E-cadherin nuclear translocation and enhanced expression of active PS1 were found in a patient with colorectal signet-ring cell carcinoma. In conclusion, we have established a colorectal cancer metastasis model in which E-cadherin proteolyis and nuclear translocation associates with aggressive foci growth only in the peritoneal microenvironment.


Assuntos
Caderinas/metabolismo , Núcleo Celular/metabolismo , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Peritoneais/metabolismo , Neoplasias Peritoneais/secundário , Animais , Western Blotting , Caderinas/genética , Carcinoma de Células em Anel de Sinete , Neoplasias Colorretais/genética , Fibronectinas , Imunofluorescência , Humanos , Técnicas Imunoenzimáticas , Linfonodos/metabolismo , Linfonodos/patologia , Metástase Linfática , Fator 1 de Ligação ao Facilitador Linfoide , Camundongos , Camundongos Nus , Neoplasias Peritoneais/genética , Presenilina-1/genética , Presenilina-1/metabolismo , Transporte Proteico , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição da Família Snail , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , beta Catenina/genética , beta Catenina/metabolismo
15.
Drug Deliv ; 28(1): 2383-2391, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34747685

RESUMO

Through the controlled addition of divalent cations, polyhistidine-tagged proteins can be clustered in form of chemically pure and mechanically stable micron-scale particles. Under physiological conditions, these materials act as self-disintegrating protein depots for the progressive release of the forming polypeptide, with potential applications in protein drug delivery, diagnosis, or theragnosis. Here we have explored the in vivo disintegration pattern of a set of such depots, upon subcutaneous administration in mice. These microparticles were fabricated with cationic forms of either Zn, Ca, Mg, or Mn, which abound in the mammalian body. By using a CXCR4-targeted fluorescent protein as a reporter building block we categorized those cations regarding their ability to persist in the administration site and to sustain a slow release of functional protein. Ca2+ and specially Zn2+ have been observed as particularly good promoters of time-prolonged protein leakage. The released polypeptides result is available for selective molecular interactions, such as specific fluorescent labeling of tumor tissues, in which the protein reaches nearly steady levels.


Assuntos
Cátions Bivalentes/química , Histidina/química , Nanopartículas/química , Proteínas/administração & dosagem , Administração Oral , Animais , Química Farmacêutica , Relação Dose-Resposta a Droga , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Feminino , Injeções Subcutâneas , Camundongos , Tamanho da Partícula , Proteínas/farmacocinética , Receptores CXCR4/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
16.
J Control Release ; 335: 117-129, 2021 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-34004204

RESUMO

Nanomedicine has opened an opportunity to improve current clinical practice by enhancing the selectivity in the delivery of antitumor drugs to specific cancer cells. These new strategies are able to bypass toxicity on normal cells increasing the effectiveness of current anticancer treatments. In acute myeloid leukemia (AML) current chemotherapy treatments generate a relevant toxic impact in normal cells and severe side effects or even patient death. In this study, we have designed a self-assembling protein nanoparticle, T22-DITOX-H6, which incorporates a ligand (T22) targeting CXCR4-overexpressing (CXCR4+) cells, and a potent cytotoxic diphtheria toxin domain. CXCR4 is overexpressed in AML leukemic cells and associates with poor prognosis, being, therefore, a relevant clinical target. We demonstrate here that T22-DITOX-H6 induces apoptosis in CXCR4+ leukemic cells through CXCR4-dependent internalization. In addition, repeated T22-DITOX-H6 treatment (10 µg/dose per 10 doses, intravenously injected) in a disseminated AML mouse model (NSG mice intravenously injected with THP-1-Luci cells, n = 10 per group) potently blocks the dissemination of AML cells in bone marrow, spleen and liver of treated mice, without inducing toxicity in healthy tissues. In conclusion, our strategy of selectively ablating CXCR4 positive leukemic cells by administering the T22-DITOX-H6 nanoparticle could be a promising treatment, especially in patients undergoing AML relapse after chemotherapy, in which leukemic cells overexpress CXCR4.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Nanopartículas , Animais , Antineoplásicos/uso terapêutico , Toxina Diftérica , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Camundongos , Receptores CXCR4/genética , Transdução de Sinais
17.
Cancers (Basel) ; 13(12)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208189

RESUMO

The accumulated molecular knowledge about human cancer enables the identification of multiple cell surface markers as highly specific therapeutic targets. A proper tumor targeting could significantly avoid drug exposure of healthy cells, minimizing side effects, but it is also expected to increase the therapeutic index. Specifically, colorectal cancer has a particularly poor prognosis in late stages, being drug targeting an appropriate strategy to substantially improve the therapeutic efficacy. In this study, we have explored the potential of the human albumin-derived peptide, EPI-X4, as a suitable ligand to target colorectal cancer via the cell surface protein CXCR4, a chemokine receptor overexpressed in cancer stem cells. To explore the potential use of this ligand, self-assembling protein nanoparticles have been generated displaying an engineered EPI-X4 version, which conferred a modest CXCR4 targeting and fast and high level of cell apoptosis in tumor CXCR4+ cells, in vitro and in vivo. In addition, when EPI-X4-based building blocks are combined with biologically inert polypeptides containing the CXCR4 ligand T22, the resulting biparatopic nanoparticles show a dramatically improved biodistribution in mouse models of CXCR4+ human cancer, faster cell internalization and enhanced target cell death when compared to the version based on a single ligand. The generation of biparatopic materials opens exciting possibilities in oncotherapies based on high precision drug delivery based on the receptor CXCR4.

18.
Int J Nanomedicine ; 16: 1869-1888, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33716502

RESUMO

BACKGROUND AND PURPOSE: Around 40-50% of diffuse large-B cell lymphoma (DLBCL) patients suffer from refractory disease or relapse after R-CHOP first-line treatment. Many ongoing clinical trials for DLBCL patients involve microtubule targeting agents (MTAs), however, their anticancer activity is limited by severe side effects. Therefore, we chose to improve the therapeutic window of the MTA monomethyl auristatin E developing a nanoconjugate, T22-AUR, that selectively targets the CXCR4 receptor, which is overexpressed in many DLBCL cells (CXCR4+) and associated with poor prognosis. METHODS: The T22-AUR specificity towards CXCR4 receptor was performed by flow cytometry in different DLBCL cell lines and running biodistribution assays in a subcutaneous mouse model bearing CXCR4+ DLBCL cells. Moreover, we determined T22-AUR cytotoxicity using cell viability assays, cell cycle analysis, DAPI staining and immunohistochemistry. Finally, the T22-AUR antineoplastic effect was evaluated in vivo in an extranodal CXCR4+ DLBCL mouse model whereas the toxicity analysis was assessed by histopathology in non-infiltrated mouse organs and by in vitro cytotoxic assays in human PBMCs. RESULTS: We demonstrate that the T22-AUR nanoconjugate displays CXCR4-dependent targeting and internalization in CXCR4+ DLBCL cells in vitro as well as in a subcutaneous DLBCL mouse model. Moreover, it shows high cytotoxic effect in CXCR4+ DLBCL cells, including induction of G2/M mitotic arrest, DNA damage, mitotic catastrophe and apoptosis. Furthermore, the nanoconjugate shows a potent reduction in lymphoma mouse dissemination without histopathological alterations in non-DLBCL infiltrated organs. Importantly, T22-AUR also exhibits lack of toxicity in human PBMCs. CONCLUSION: T22-AUR exerts in vitro and in vivo anticancer effect on CXCR4+ DLBCL cells without off-target toxicity. Thus, T22-AUR promises to become an effective therapy for CXCR4+ DLBCL patients.


Assuntos
Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/patologia , Nanoconjugados/uso terapêutico , Oligopeptídeos/uso terapêutico , Receptores CXCR4/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Endocitose/efeitos dos fármacos , Feminino , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/patologia , Linfoma Difuso de Grandes Células B/genética , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Camundongos Endogâmicos NOD , Camundongos SCID , Oligopeptídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Tela Subcutânea/efeitos dos fármacos , Tela Subcutânea/patologia , Distribuição Tecidual/efeitos dos fármacos
19.
Acta Biomater ; 130: 211-222, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34116228

RESUMO

Green fluorescent protein (GFP) is a widely used scaffold for protein-based targeted nanomedicines because of its high biocompatibility, biological neutrality and outstanding structural stability. However, being immunogenicity a major concern in the development of drug carriers, the use of exogenous proteins such as GFP in clinics might be inadequate. Here we report a human nidogen-derived protein (HSNBT), rationally designed to mimic the structural and functional properties of GFP as a scaffold for nanomedicine. For that, a GFP-like ß-barrel, containing the G2 domain of the human nidogen, has been rationally engineered to obtain a biologically neutral protein that self-assembles as 10nm-nanoparticles. This scaffold is the basis of a humanized nanoconjugate, where GFP, from the well-characterized protein T22-GFP-H6, has been substituted by the nidogen-derived GFP-like HSNBT protein. The resulting construct T22-HSNBT-H6, is a humanized CXCR4-targeted nanoparticle that selectively delivers conjugated genotoxic Floxuridine into cancer CXCR4+ cells. Indeed, the administration of T22-HSNBT-H6-FdU in a CXCR4-overexpressing colorectal cancer mouse model results in an even more efficient selective antitumoral effect than that shown by its GFP-counterpart, in absence of systemic toxicity. Therefore, the newly developed GFP-like protein scaffold appears as an ideal candidate for the development of humanized protein nanomaterials and successfully supports the tumor-targeted nanoscale drug T22-HSNBT-H6-FdU. STATEMENT OF SIGNIFICANCE: Targeted nanomedicine seeks for humanized and biologically neutral protein carriers as alternative of widely used but immunogenic exogenous protein scaffolds such as green fluorescent protein (GFP). This work reports for the first time the rational engineering of a human homolog of the GFP based in the human nidogen (named HSNBT) that shows full potential to be used in humanized protein-based targeted nanomedicines. This has been demonstrated in T22-HSNBT-H6-FdU, a humanized CXCR4-targeted protein nanoconjugate able to selectively deliver its genotoxic load into cancer cells.


Assuntos
Portadores de Fármacos , Nanomedicina , Sistemas de Liberação de Medicamentos , Proteínas de Fluorescência Verde , Humanos , Nanoconjugados
20.
J Hematol Oncol ; 13(1): 36, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32295630

RESUMO

BACKGROUND: Current acute myeloid leukemia (AML) therapy fails to eliminate quiescent leukemic blasts in the bone marrow, leading to about 50% of patient relapse by increasing AML burden in the bone marrow, blood, and extramedullar sites. We developed a protein-based nanoparticle conjugated to the potent antimitotic agent Auristatin E that selectively targets AML blasts because of their CXCR4 receptor overexpression (CXCR4+) as compared to normal cells. The therapeutic rationale is based on the involvement of CXCR4 overexpression in leukemic blast homing and quiescence in the bone marrow, and the association of these leukemic stem cells with minimal residual disease, dissemination, chemotherapy resistance, and lower patient survival. METHODS: Monomethyl Auristatin E (MMAE) was conjugated with the CXCR4 targeted protein nanoparticle T22-GFP-H6 produced in E. coli. Nanoconjugate internalization and in vitro cell viability assays were performed in CXCR4+ AML cell lines to analyze the specific antineoplastic activity through the CXCR4 receptor. In addition, a disseminated AML animal model was used to evaluate the anticancer effect of T22-GFP-H6-Auristatin in immunosuppressed NSG mice (n = 10/group). U of Mann-Whitney test was used to consider if differences were significant between groups. RESULTS: T22-GFP-H6-Auristatin was capable to internalize and exert antineoplastic effects through the CXCR4 receptor in THP-1 and SKM-1 CXCR4+ AML cell lines. In addition, repeated administration of the T22-GFP-H6-Auristatin nanoconjugate (9 doses daily) achieves a potent antineoplastic activity by internalizing specifically in the leukemic cells (luminescent THP-1) to selectively eliminate them. This leads to reduced involvement of leukemic cells in the bone marrow, peripheral blood, liver, and spleen, while avoiding toxicity in normal tissues in a luminescent disseminated AML mouse model. CONCLUSIONS: A novel nanoconjugate for targeted drug delivery of Auristatin reduces significantly the acute myeloid leukemic cell burden in the bone marrow and blood and blocks its dissemination to extramedullar organs in a CXCR4+ AML model. This selective drug delivery approach validates CXCR4+ AML cells as a target for clinical therapy, not only promising to improve the control of leukemic dissemination but also dramatically reducing the severe toxicity of classical AML therapy.


Assuntos
Aminobenzoatos/uso terapêutico , Antineoplásicos/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Nanoconjugados/uso terapêutico , Oligopeptídeos/uso terapêutico , Receptores CXCR4/metabolismo , Aminobenzoatos/administração & dosagem , Animais , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos NOD , Nanoconjugados/administração & dosagem , Invasividade Neoplásica/patologia , Invasividade Neoplásica/prevenção & controle , Oligopeptídeos/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA