RESUMO
Much cell-to-cell communication is facilitated by cell surface receptor tyrosine kinases (RTKs). These proteins phosphorylate their downstream cytoplasmic substrates in response to stimuli such as growth factors. Despite their central roles, the functions of many RTKs are still poorly understood. To resolve the lack of systematic knowledge, we apply three complementary methods to map the molecular context and substrate profiles of RTKs. We use affinity purification coupled to mass spectrometry (AP-MS) to characterize stable binding partners and RTK-protein complexes, proximity-dependent biotin identification (BioID) to identify transient and proximal interactions, and an in vitro kinase assay to identify RTK substrates. To identify how kinase interactions depend on kinase activity, we also use kinase-deficient mutants. Our data represent a comprehensive, systemic mapping of RTK interactions and substrates. This resource adds information regarding well-studied RTKs, offers insights into the functions of less well-studied RTKs, and highlights RTK-RTK interactions and shared signaling pathways.
Assuntos
Receptores Proteína Tirosina Quinases , Transdução de Sinais , Membrana Celular/metabolismo , Humanos , Fosforilação , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Tirosina/metabolismoRESUMO
Treatment options for COVID-19, caused by SARS-CoV-2, remain limited. Understanding viral pathogenesis at the molecular level is critical to develop effective therapy. Some recent studies have explored SARS-CoV-2-host interactomes and provided great resources for understanding viral replication. However, host proteins that functionally associate with SARS-CoV-2 are localized in the corresponding subnetwork within the comprehensive human interactome. Therefore, constructing a downstream network including all potential viral receptors, host cell proteases, and cofactors is necessary and should be used as an additional criterion for the validation of critical host machineries used for viral processing. This study applied both affinity purification mass spectrometry (AP-MS) and the complementary proximity-based labeling MS method (BioID-MS) on 29 viral ORFs and 18 host proteins with potential roles in viral replication to map the interactions relevant to viral processing. The analysis yields a list of 693 hub proteins sharing interactions with both viral baits and host baits and revealed their biological significance for SARS-CoV-2. Those hub proteins then served as a rational resource for drug repurposing via a virtual screening approach. The overall process resulted in the suggested repurposing of 59 compounds for 15 protein targets. Furthermore, antiviral effects of some candidate drugs were observed in vitro validation using image-based drug screen with infectious SARS-CoV-2. In addition, our results suggest that the antiviral activity of methotrexate could be associated with its inhibitory effect on specific protein-protein interactions.
Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Descoberta de Drogas , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Proteoma/efeitos dos fármacos , SARS-CoV-2/fisiologia , COVID-19/virologia , Reposicionamento de Medicamentos , Humanos , Espectrometria de Massas , Metotrexato/farmacologia , Proteômica , Replicação Viral/efeitos dos fármacosRESUMO
Talin protein is one of the key components in integrin-mediated adhesion complexes. Talins transmit mechanical forces between ß-integrin and actin, and regulate adhesion complex composition and signaling through the force-regulated unfolding of talin rod domain. Using modified talin proteins, we demonstrate that these functions contribute to different cellular processes and can be dissected. The transmission of mechanical forces regulates adhesion complex composition and phosphotyrosine signaling even in the absence of the mechanically regulated talin rod subdomains. However, the presence of the rod subdomains and their mechanical activation are required for the reinforcement of the adhesion complex, cell polarization and migration. Talin rod domain unfolding was also found to be essential for the generation of cellular signaling anisotropy, since both insufficient and excess activity of the rod domain severely inhibited cell polarization. Utilizing proteomics tools, we identified adhesome components that are recruited and activated either in a talin rod-dependent manner or independently of the rod subdomains. This study clarifies the division of roles between the force-regulated unfolding of a talin protein (talin 1) and its function as a physical linker between integrins and the cytoskeleton.
Assuntos
Movimento Celular , Adesões Focais/metabolismo , Desdobramento de Proteína , Transdução de Sinais , Talina/metabolismo , Actinas/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Citoesqueleto/metabolismo , Adesões Focais/genética , Integrinas/metabolismo , Camundongos , Fosfotirosina/metabolismo , Ligação Proteica , Talina/genéticaRESUMO
Hypomorphic IL2RG mutations may lead to milder phenotypes than X-SCID, named variably as atypical X-SCID or X-CID. We report an 11-year-old boy with a novel c. 172C>T;p.(Pro58Ser) mutation in IL2RG, presenting with atypical X-SCID phenotype. We also review the growing number of hypomorphic IL2RG mutations causing atypical X-SCID. We studied the patient's clinical phenotype, B, T, NK, and dendritic cell phenotypes, IL2RG and CD25 cell surface expression, and IL-2 target gene expression, STAT tyrosine phosphorylation, PBMC proliferation, and blast formation in response to IL-2 stimulation, as well as protein-protein interactions of the mutated IL2RG by BioID proximity labeling. The patient suffered from recurrent upper and lower respiratory tract infections, bronchiectasis, and reactive arthritis. His total lymphocyte counts have remained normal despite skewed T and B cells subpopulations, with very low numbers of plasmacytoid dendritic cells. Surface expression of IL2RG was reduced on his lymphocytes. This led to impaired STAT tyrosine phosphorylation in response to IL-2 and IL-21, reduced expression of IL-2 target genes in patient CD4+ T cells, and reduced cell proliferation in response to IL-2 stimulation. BioID proximity labeling showed aberrant interactions between mutated IL2RG and ER/Golgi proteins causing mislocalization of the mutated IL2RG to the ER/Golgi interface. In conclusion, IL2RG p.(Pro58Ser) causes X-CID. Failure of IL2RG plasma membrane targeting may lead to atypical X-SCID. We further identified another carrier of this mutation from newborn SCID screening, lost to closer scrutiny.
Assuntos
Células Dendríticas/imunologia , Subunidade gama Comum de Receptores de Interleucina/genética , Linfócitos/fisiologia , Complexos Multiproteicos/metabolismo , Mutação/genética , Receptores de Interleucina-2/metabolismo , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/diagnóstico , Células Cultivadas , Criança , Regulação da Expressão Gênica , Hemizigoto , Humanos , Masculino , Complexos Multiproteicos/genética , Linhagem , Receptores de Interleucina-2/genética , Fator de Transcrição STAT5/metabolismo , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/genéticaRESUMO
Influenza A viruses cause infections in the human respiratory tract and give rise to annual seasonal outbreaks, as well as more rarely dreaded pandemics. Influenza A viruses become quickly resistant to the virus-directed antiviral treatments, which are the current main treatment options. A promising alternative approach is to target host cell factors that are exploited by influenza viruses. To this end, we characterized the phosphoproteome of influenza A virus infected primary human macrophages to elucidate the intracellular signaling pathways and critical host factors activated upon influenza infection. We identified 1675 phosphoproteins, 4004 phosphopeptides and 4146 nonredundant phosphosites. The phosphorylation of 1113 proteins (66%) was regulated upon infection, highlighting the importance of such global phosphoproteomic profiling in primary cells. Notably, 285 of the identified phosphorylation sites have not been previously described in publicly available phosphorylation databases, despite many published large-scale phosphoproteome studies using human and mouse cell lines. Systematic bioinformatics analysis of the phosphoproteome data indicated that the phosphorylation of proteins involved in the ubiquitin/proteasome pathway (such as TRIM22 and TRIM25) and antiviral responses (such as MAVS) changed in infected macrophages. Proteins known to play roles in small GTPase-, mitogen-activated protein kinase-, and cyclin-dependent kinase- signaling were also regulated by phosphorylation upon infection. In particular, the influenza infection had a major influence on the phosphorylation profiles of a large number of cyclin-dependent kinase substrates. Functional studies using cyclin-dependent kinase inhibitors showed that the cyclin-dependent kinase activity is required for efficient viral replication and for activation of the host antiviral responses. In addition, we show that cyclin-dependent kinase inhibitors protect IAV-infected mice from death. In conclusion, we provide the first comprehensive phosphoproteome characterization of influenza A virus infection in primary human macrophages, and provide evidence that cyclin-dependent kinases represent potential therapeutic targets for more effective treatment of influenza infections.
Assuntos
Vírus da Influenza A/patogenicidade , Influenza Humana/metabolismo , Macrófagos/virologia , Fosfoproteínas/análise , Proteômica/métodos , Animais , Biologia Computacional/métodos , Quinases Ciclina-Dependentes/metabolismo , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Macrófagos/metabolismo , Camundongos , Transdução de SinaisRESUMO
Influenza NS1 protein is an important virulence factor that is capable of binding double-stranded (ds) RNA and inhibiting dsRNA-mediated host innate immune responses. Here we show that NS1 can also bind cellular dsDNA. This interaction prevents loading of transcriptional machinery to the DNA, thereby attenuating IAV-mediated expression of antiviral genes. Thus, we identified a previously undescribed strategy, by which RNA virus inhibits cellular transcription to escape antiviral response and secure its replication.
Assuntos
DNA/metabolismo , Transcrição Gênica/fisiologia , Proteínas não Estruturais Virais/metabolismo , Animais , Linhagem Celular , Cromatina/metabolismo , Humanos , Vírus da Influenza A/fisiologia , Ligação Proteica , Proteínas não Estruturais Virais/fisiologia , Replicação ViralRESUMO
Dectin-1 is a membrane-bound pattern recognition receptor for ß-glucans, which are the main constituents of fungal cell walls. Detection of ß-glucans by dectin-1 triggers an effective innate immune response. In this study, we have used a systems biology approach to provide the first comprehensive characterization of the secretome and associated intracellular signaling pathways involved in activation of dectin-1/Syk in human macrophages. Transcriptome and secretome analysis revealed that the dectin-1 pathway induced significant gene expression changes and robust protein secretion in macrophages. The enhanced protein secretion correlated only partly with increased gene expression. Bioinformatics combined with functional studies revealed that the dectin-1/Syk pathway activates both conventional and unconventional, vesicle-mediated, protein secretion. The unconventional protein secretion triggered by the dectin-1 pathway is dependent on inflammasome activity and an active autophagic process. In conclusion, our results reveal that unconventional protein secretion has an important role in the innate immune response against fungal infections.
Assuntos
Autofagia/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata , Inflamassomos/imunologia , Lectinas Tipo C/imunologia , Macrófagos/imunologia , Feminino , Humanos , Inflamassomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Macrófagos/metabolismo , Masculino , Micoses/imunologia , Micoses/metabolismo , Proteínas Tirosina Quinases/imunologia , Proteínas Tirosina Quinases/metabolismo , Quinase SykRESUMO
Viral double-stranded RNA (dsRNA) is the most important viral structure recognized by cytosolic pattern-recognition receptors of the innate immune system, and its recognition results in the activation of signaling cascades that stimulate the production of antiviral cytokines and apoptosis of infected cells. 14-3-3 proteins are ubiquitously expressed regulatory molecules that participate in a variety of cellular processes, and 14-3-3 protein-mediated signaling pathways are activated by cytoplasmic dsRNA in human keratinocytes. However, the functional role of 14-3-3 protein-mediated interactions during viral dsRNA stimulation has remained uncharacterized. Here, we used functional proteomics to identify proteins whose phosphorylation and interaction with 14-3-3 is modulated by dsRNA and to characterize the signaling pathways activated during cytosolic dsRNA-induced innate immune response in human HaCaT keratinocytes. Phosphoproteome analysis showed that several MAPK- and immune-response-related signaling pathways were activated after dsRNA stimulation. Interactome analysis identified RelA-associated inhibitor, high-mobility group proteins, and several proteins associated with host responses to viral infection as novel 14-3-3 target proteins. Functional studies showed that RelA-associated inhibitor regulated dsRNA-induced apoptosis and TNF production. Integrated network analyses of proteomic data revealed that sirtuin1 was a central molecule regulated by 14-3-3s during dsRNA stimulation. Further experiments showed that sirtuin 1 negatively regulated dsRNA-induced NFκB transcriptional activity, suppressed expression of antiviral cytokines, and protected cells from apoptosis in dsRNA-stimulated and encephalomyocarditis-virus-infected keratinocytes. In conclusion, our data highlight the importance of 14-3-3 proteins in antiviral responses and identify RelA-associated inhibitor and sirtuin 1 as novel regulators of antiviral innate immune responses.
Assuntos
Proteínas 14-3-3/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Queratinócitos/metabolismo , Proteômica/métodos , RNA de Cadeia Dupla/metabolismo , Proteínas Repressoras/metabolismo , Sirtuína 1/metabolismo , Infecções por Cardiovirus/imunologia , Infecções por Cardiovirus/metabolismo , Linhagem Celular , Citosol/metabolismo , Vírus da Encefalomiocardite/genética , Vírus da Encefalomiocardite/imunologia , Humanos , Imunidade Inata , Queratinócitos/citologia , Queratinócitos/imunologia , Queratinócitos/virologia , Fosforilação , RNA de Cadeia Dupla/imunologia , RNA Viral/imunologia , RNA Viral/metabolismo , Transdução de SinaisRESUMO
Sendai virus (SeV) is a common respiratory pathogen in mice, rats, and hamsters. Host cell recognition of SeV is mediated by pathogen recognition receptors, which recognize viral components and induce intracellular signal transduction pathways that activate the antiviral innate immune response. Viruses use host proteins to control the activities of signaling proteins and their downstream targets, and one of the most important host protein modifications regulated by viral infection is phosphorylation. In this study, we used phosphoproteomics combined with bioinformatics to get a global view of the signaling pathways activated during SeV infection in human lung epithelial cells. We identified altogether 1347 phosphoproteins, and our data shows that SeV infection induces major changes in protein phosphorylation affecting the phosphorylation of almost one thousand host proteins. Bioinformatics analysis showed that SeV infection activates known pathways including MAPK signaling, as well as signaling pathways previously not linked to SeV infection including Rho family of GTPases, HIPPO signaling, and mammalian target of rapamycin (mTOR)-signaling pathway. Further, we performed functional studies with mTOR inhibitors and siRNA approach, which revealed that mTOR signaling is needed for both the host IFN response as well as viral protein synthesis in SeV-infected human lung epithelial cells.
Assuntos
Células Epiteliais/metabolismo , Neoplasias Pulmonares/metabolismo , Fosfoproteínas/metabolismo , Proteômica/métodos , Infecções por Respirovirus/metabolismo , Vírus Sendai/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Western Blotting , Biologia Computacional , Cricetinae , Células Epiteliais/citologia , Humanos , Interferons/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/virologia , Camundongos , Fosfoproteínas/genética , Fosforilação , Análise Serial de Proteínas , RNA Mensageiro/genética , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Infecções por Respirovirus/virologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Células Tumorais CultivadasRESUMO
The present study reports the identification and comparison of all expressed cell-surface exposed proteins from the well-known probiotic L. rhamnosus GG and a related dairy strain, Lc705. To obtain this information, the cell-surface bound proteins were released from intact cells by trypsin shaving under hypertonic conditions with and without DTT. Liquid chromatography tandem mass spectrometry (LC-MS/MS) analyses of the purified peptides identified a total of 102 and 198 individual proteins from GG and Lc705, respectively. Comparison of both data sets suggested that the Msp-type antigens (Msp1, Msp2) and the serine protease HtrA were uniquely exposed at the cell surface of GG, whereas the Lc705-specific proteins included lactocepin and a wider range of different moonlighting proteins. ImmunoEM analyses with the GG and Lc705 antibodies suggested that the whole-cell immunization yielded antibodies toward surface-bound proteins and proteins that were secreted or released from the cell-surface. One of the detected antigens was a pilus-like structure on the surface of GG cells, which was not detected with Lc705 antibodies. Further 2-DE immunoblotting analysis of GG proteins with both L. rhamnosus antisera revealed that majority of the detected antigens were moonlighting proteins with potential roles in adhesion, pathogen exclusion or immune stimulation. The present study provides the first catalog of surface-exposed proteins from lactobacilli and highlights the importance of the specifically exposed moonlighting proteins for adaptation and probiotic functions of L. rhamnosus.
Assuntos
Proteínas de Bactérias/análise , Immunoblotting/métodos , Lacticaseibacillus rhamnosus/química , Proteínas de Membrana/análise , Proteoma/análise , Proteômica/métodos , Anticorpos Antibacterianos , Proteínas de Bactérias/classificação , Proteínas de Bactérias/fisiologia , Proteínas de Membrana/classificação , Proteínas de Membrana/fisiologia , Proteoma/químicaRESUMO
The increasing coverage and sensitivity of LC-MS/MS-based proteomics have expanded its applications in systems medicine. In particular, label-free quantitation approaches are enabling biomarker discovery in terms of statistical comparison of proteomic profiles across large numbers of clinical samples. However, it still remains poorly understood how much protein markers can add novel insights compared to markers derived from mRNA transcriptomic profiling. Using paired label-free LC-MS/MS and gene expression microarray measurements from primary samples of patients with acute myeloid leukemia (AML), we demonstrate here that while the quantitative proteomic and transcriptomic profiles were highly correlated, in general, the marker panels showing statistically significant expression changes across the disease and healthy groups were profoundly different between protein and mRNA levels. In particular, the proteomic assay enabled unique links to known leukemic processes, which were missed when using the transcriptomic profiling alone, as well as identified additional links to metabolic regulators and chromatin remodelers, such as GPX1, fumarate hydratase, and SET oncogene, which have subsequently been evaluated in independent AML samples. Overall, these results highlighted the complementary and informative view obtained from the quantitative LC-MS/MS approach into the AML deregulated signaling networks.
Assuntos
Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteínas/análise , Proteínas/genética , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Regulação Leucêmica da Expressão Gênica , Humanos , Mapas de Interação de Proteínas , Proteínas/metabolismo , Proteômica , RNA Mensageiro/análise , RNA Mensageiro/genética , Transdução de Sinais , Biologia de Sistemas , Espectrometria de Massas em Tandem , TranscriptomaRESUMO
Fungal infections (mycoses) are common diseases of varying severity that cause problems, especially to immunologically compromised people. Fungi express a variety of pathogen-associated molecular patterns on their surface including ß-glucans, which are important immunostimulatory components of fungal cell walls. During stimulatory conditions of infection and colonization, besides intensive intracellular response, human cells actively communicate on the intercellular level by secreting proteins and other biomolecules with several mechanisms. Vesicular secretion remains one of the most important paths for the proteins to exit the cell. Here, we have used high-throughput quantitative proteomics combined with bioinformatics to characterize and quantify vesicle-mediated protein release from ß-glucan-stimulated human macrophages differentiated in vitro from primary blood monocytes. We show that ß-glucan stimulation induces vesicle-mediated protein secretion. Proteomic study identified 540 distinct proteins from the vesicles, and the identified proteins show a proteomic signature characteristic for their cellular origin. Importantly, we identified several receptors, including cation-dependent mannose-6-phosphate receptor, macrophage scavenger receptor, and P2X7 receptor, that have not been identified from vesicles before. Proteomic data together with detailed pathway and network analysis showed that integrins and their cytoplasmic cargo proteins are highly abundant in extracellular vesicles released upon ß-glucan stimulation. In conclusion, the present data provides a solid basis for further studies on the functional role of vesicular protein secretion upon fungal infection.
Assuntos
Macrófagos/efeitos dos fármacos , Proteínas/metabolismo , Proteômica/métodos , Vesículas Secretórias/metabolismo , beta-Glucanas/farmacologia , Western Blotting , Diferenciação Celular , Células Cultivadas , Cromatografia Líquida , Humanos , Macrófagos/citologia , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Microscopia Eletrônica , Monócitos/citologia , Proteoma/metabolismo , Vesículas Secretórias/ultraestrutura , Transdução de Sinais , Espectrometria de Massas em TandemRESUMO
BACKGROUND: It is possible to identify thousands of phosphopeptides and -proteins in a single experiment with mass spectrometry-based phosphoproteomics. However, a current bottleneck is the downstream data analysis which is often laborious and requires a number of manual steps. RESULTS: Toward automating the analysis steps, we have developed and implemented a software, PhosFox, which enables peptide-level processing of phosphoproteomic data generated by multiple protein identification search algorithms, including Mascot, Sequest, and Paragon, as well as cross-comparison of their identification results. The software supports both qualitative and quantitative phosphoproteomics studies, as well as multiple between-group comparisons. Importantly, PhosFox detects uniquely phosphorylated peptides and proteins in one sample compared to another. It also distinguishes differences in phosphorylation sites between phosphorylated proteins in different samples. Using two case study examples, a qualitative phosphoproteome dataset from human keratinocytes and a quantitative phosphoproteome dataset from rat kidney inner medulla, we demonstrate here how PhosFox facilitates an efficient and in-depth phosphoproteome data analysis. PhosFox was implemented in the Perl programming language and it can be run on most common operating systems. Due to its flexible interface and open source distribution, the users can easily incorporate the program into their MS data analysis workflows and extend the program with new features. PhosFox source code, implementation and user instructions are freely available from https://bitbucket.org/phintsan/phosfox. CONCLUSIONS: PhosFox facilitates efficient and more in-depth comparisons between phosphoproteins in case-control settings. The open source implementation is easily extendable to accommodate additional features for widespread application use cases.
RESUMO
Integrin adaptor proteins, like tensin-2, are crucial for cell adhesion and signaling. However, the function of tensin-2 beyond localizing to focal adhesions remain poorly understood. We utilized proximity-dependent biotinylation and Strep-tag affinity proteomics to identify interaction partners of tensin-2 in Flp-In 293 T-REx cells. Interactomics linked tensin-2 to known focal adhesion proteins and the dystrophin glycoprotein complex, while also uncovering novel interaction with the glycolytic enzyme GAPDH. We demonstrated that Y483-phosphorylation of tensin-2 regulates the glycolytic rate in Flp-In 293 T-REx and MEF cells and found that pY483 tensin-2 is enriched in adhesions in MEF cells. Our study unveils novel interaction partners for tensin-2 and further solidifies its speculated role in cell energy metabolism. These findings shed fresh insight on the functions of tensin-2, highlighting its potential as a therapeutic target for diseases associated with impaired cell adhesion and metabolism.
Assuntos
Glicólise , Tensinas , Humanos , Tensinas/metabolismo , Fosforilação , Adesão Celular , Células HEK293 , Ligação Proteica , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Adesões Focais/metabolismo , Proteômica/métodos , Animais , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismoRESUMO
Influenza A viruses are important pathogens that cause acute respiratory diseases and annual epidemics in humans. Macrophages recognize influenza A virus infection with their pattern recognition receptors, and are involved in the activation of proper innate immune response. Here, we have used high-throughput subcellular proteomics combined with bioinformatics to provide a global view of host cellular events that are activated in response to influenza A virus infection in human primary macrophages. We show that viral infection regulates the expression and/or subcellular localization of more than one thousand host proteins at early phases of infection. Our data reveals that there are dramatic changes in mitochondrial and nuclear proteomes in response to infection. We show that a rapid cytoplasmic leakage of lysosomal proteins, including cathepsins, followed by their secretion, contributes to inflammasome activation and apoptosis seen in the infected macrophages. Also, our results demonstrate that P2X7 receptor and src tyrosine kinase activity are essential for inflammasome activation during influenza A virus infection. Finally, we show that influenza A virus infection is associated with robust secretion of different danger-associated molecular patterns (DAMPs) suggesting an important role for DAMPs in host response to influenza A virus infection. In conclusion, our high-throughput quantitative proteomics study provides important new insight into host-response against influenza A virus infection in human primary macrophages.
Assuntos
Vírus da Influenza A/imunologia , Macrófagos/virologia , Proteoma/fisiologia , Proteômica/métodos , Animais , Apoptose/fisiologia , Catepsinas/genética , Catepsinas/metabolismo , Núcleo Celular/metabolismo , Células Cultivadas , Embrião de Galinha , Biologia Computacional , Citoplasma/metabolismo , Feminino , Interações Hospedeiro-Patógeno , Humanos , Inflamassomos/metabolismo , Vírus da Influenza A/patogenicidade , Lisossomos/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Mitocôndrias/metabolismo , Mapas de Interação de Proteínas , Transdução de Sinais/imunologia , Proteínas Virais/genética , Proteínas Virais/imunologia , Proteínas Virais/metabolismoRESUMO
dsRNA is an important pathogen-associated molecular pattern that is primarily recognized by cytosolic pattern-recognition receptors of the innate-immune system during virus infection. This recognition results in the activation of inflammasome-associated caspase-1 and apoptosis of infected cells. In this study, we used high-throughput proteomics to identify secretome, the global pattern of secreted proteins, in human primary macrophages that had been activated through the cytoplasmic dsRNA-recognition pathway. The secretome analysis revealed cytoplasmic dsRNA-recognition pathway-induced secretion of several exosome-associated proteins, as well as basal and dsRNA-activated secretion of lysosomal protease cathepsins and cysteine protease inhibitors (cystatins). Inflammasome activation was almost completely abolished by cathepsin inhibitors in response to dsRNA stimulation, as well as encephalomyocarditis virus and vesicular stomatitis virus infections. Interestingly, Western blot analysis showed that the mature form of cathepsin D, but not cathepsin B, was secreted simultaneously with IL-18 and inflammasome components ASC and caspase-1 in cytoplasmic dsRNA-stimulated cells. Furthermore, small interfering RNA-mediated silencing experiments confirmed that cathepsin D has a role in inflammasome activation. Caspase-1 activation was followed by proteolytic processing of caspase-3, indicating that inflammasome activation precedes apoptosis in macrophages that had recognized cytoplasmic RNA. Like inflammasome activation, apoptosis triggered by dsRNA stimulation and virus infection was effectively blocked by cathepsin inhibition. In conclusion, our results emphasize the importance of cathepsins in the innate immune response to virus infection.
Assuntos
Apoptose/imunologia , Catepsinas/fisiologia , Citoplasma/imunologia , Inflamassomos/imunologia , Macrófagos/imunologia , Macrófagos/virologia , RNA de Cadeia Dupla/imunologia , RNA Viral/imunologia , Apoptose/genética , Catepsinas/antagonistas & inibidores , Catepsinas/metabolismo , Células Cultivadas , Citoplasma/genética , Citoplasma/metabolismo , Vírus da Encefalomiocardite/imunologia , Humanos , Inflamassomos/metabolismo , Macrófagos/enzimologia , Mimetismo Molecular/imunologia , Poli I-C/imunologia , Poli I-C/metabolismo , RNA de Cadeia Dupla/metabolismo , RNA Viral/metabolismo , Transdução de Sinais/imunologia , Vírus da Estomatite Vesicular Indiana/imunologiaRESUMO
Chromosomal translocations creating fusion genes are common cancer drivers. The oncogenic ETV6-NTRK3 (EN) gene fusion joins the sterile alpha domain of the ETV6 transcription factor with the tyrosine kinase domain of the neurotrophin-3 receptor NTRK3. Four EN variants with alternating break points have since been detected in a wide range of human cancers. To provide molecular level insight into EN oncogenesis, we employed a proximity labeling mass spectrometry approach to define the molecular context of the fusions. We identify in total 237 high-confidence interactors, which link EN fusions to several key signaling pathways, including ERBB, insulin and JAK/STAT. We then assessed the effects of EN variants on these pathways, and showed that the pan NTRK inhibitor Selitrectinib (LOXO-195) inhibits the oncogenic activity of EN2, the most common variant. This systems-level analysis defines the molecular framework in which EN oncofusions operate to promote cancer and provides some mechanisms for therapeutics.
RESUMO
The bone marrow microenvironment interacts with malignant cells and regulates cancer survival and immune evasion in multiple myeloma (MM). We investigated the immune profiles of longitudinal bone marrow samples from patients with newly diagnosed MM (n = 18) using cytometry by time-of-flight. The results before and during treatment were compared between patients with good (GR, n = 11) and bad (BR, n = 7) responses to lenalidomide/bortezomib/dexamethasone-based treatment. Before treatment, the GR group had a lower tumor cell burden and a higher number of T cells with a phenotype shifted toward CD8+ T cells expressing markers attributed to cytotoxicity (CD45RA and CD57), a higher abundance of CD8+ terminal effector cells, and a lower abundance of CD8+ naïve T cells. On natural killer (NK) cells, increased expression of CD56 (NCAM), CD57, and CD16 was seen at baseline in the GR group, indicating their maturation and cytotoxic potential. During lenalidomide-based treatment, the GR patients showed an increase in effector memory CD4+ and CD8+ T-cell subsets. These findings support distinct immune patterns in different clinical contexts, suggesting that deep immune profiling could be used for treatment guidance and warrants further exploration.
RESUMO
Psychedelics produce fast and persistent antidepressant effects and induce neuroplasticity resembling the effects of clinically approved antidepressants. We recently reported that pharmacologically diverse antidepressants, including fluoxetine and ketamine, act by binding to TrkB, the receptor for BDNF. Here we show that lysergic acid diethylamide (LSD) and psilocin directly bind to TrkB with affinities 1,000-fold higher than those for other antidepressants, and that psychedelics and antidepressants bind to distinct but partially overlapping sites within the transmembrane domain of TrkB dimers. The effects of psychedelics on neurotrophic signaling, plasticity and antidepressant-like behavior in mice depend on TrkB binding and promotion of endogenous BDNF signaling but are independent of serotonin 2A receptor (5-HT2A) activation, whereas LSD-induced head twitching is dependent on 5-HT2A and independent of TrkB binding. Our data confirm TrkB as a common primary target for antidepressants and suggest that high-affinity TrkB positive allosteric modulators lacking 5-HT2A activity may retain the antidepressant potential of psychedelics without hallucinogenic effects.
Assuntos
Antidepressivos , Alucinógenos , Dietilamida do Ácido Lisérgico , Psilocibina , Receptor trkB , Alucinógenos/metabolismo , Humanos , Células HEK293 , Sítios de Ligação , Simulação de Dinâmica Molecular , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Transdução de Sinais , Receptor trkB/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Antidepressivos/metabolismo , Regulação Alostérica , Masculino , Feminino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Embrião de Mamíferos/citologia , Neurônios/efeitos dos fármacos , Dietilamida do Ácido Lisérgico/química , Dietilamida do Ácido Lisérgico/metabolismo , Dietilamida do Ácido Lisérgico/farmacologia , Psilocibina/química , Psilocibina/metabolismo , Psilocibina/farmacologiaRESUMO
Background: Various skeletal disorders display defects in osteoblast development and function. An in vitro model can help to understand underlying disease mechanisms. Currently, access to appropriate starting material for in vitro osteoblastic studies is limited. Native osteoblasts and their progenitors, the bone marrow mesenchymal stem cells, (MSCs) are problematic to isolate from affected patients and challenging to expand in vitro. Human dermal fibroblasts in vitro are a promising substitute source of cells. Method: We developed an in vitro culturing technique to transdifferentiate fibroblasts into osteoblast-like cells. We obtained human fibroblasts from forearm skin biopsy and differentiated them into osteoblast-like cells with ß-glycerophosphate, ascorbic acid, and dexamethasone treatment. Osteoblastic phenotype was confirmed by staining for alkaline phosphatase (ALP), calcium and phosphate deposits (Alizarin Red, Von Kossa) and by a multi-omics approach (transcriptomic, proteomic, and phosphoproteomic analyses). Result: After 14 days of treatment, both fibroblasts and MSCs (reference cells) stained positive for ALP together with a significant increase in bone specific ALP (p = 0.04 and 0.004, respectively) compared to untreated cells. At a later time point, both cell types deposited minerals, indicating mineralization. In addition, fibroblasts and MSCs showed elevated expression of several osteogenic genes (e.g. ALPL, RUNX2, BMPs and SMADs), and decreased expression of SOX9. Ingenuity Pathways Analysis of RNA sequencing data from fibroblasts and MSCs showed that the osteoarthritis pathway was activated in both cell types (p_adj. = 0.003 and 0.004, respectively). Discussion: These data indicate that our in vitro treatment induces osteoblast-like differentiation in fibroblasts and MSCs, producing an in vitro osteoblastic cell system. This culturing system provides an alternative tool for bone biology research and skeletal tissue engineering.