RESUMO
Streams and river networks are increasingly recognized as significant sources for the greenhouse gas nitrous oxide (N2 O). N2 O is a transformation product of nitrogenous compounds in soil, sediment and water. Agricultural areas are considered a particular hotspot for emissions because of the large input of nitrogen (N) fertilizers applied on arable land. However, there is little information on N2 O emissions from forest streams although they constitute a major part of the total stream network globally. Here, we compiled N2 O concentration data from low-order streams (~1,000 observations from 172 stream sites) covering a large geographical gradient in Sweden from the temperate to the boreal zone and representing catchments with various degrees of agriculture and forest coverage. Our results showed that agricultural and forest streams had comparable N2 O concentrations of 1.6 ± 2.1 and 1.3 ± 1.8 µg N/L, respectively (mean ± SD) despite higher total N (TN) concentrations in agricultural streams (1,520 ± 1,640 vs. 780 ± 600 µg N/L). Although clear patterns linking N2 O concentrations and environmental variables were difficult to discern, the percent saturation of N2 O in the streams was positively correlated with stream concentration of TN and negatively correlated with pH. We speculate that the apparent contradiction between lower TN concentration but similar N2 O concentrations in forest streams than in agricultural streams is due to the low pH (<6) in forest soils and streams which affects denitrification and yields higher N2 O emissions. An estimate of the N2 O emission from low-order streams at the national scale revealed that ~1.8 × 109 g N2 O-N are emitted annually in Sweden, with forest streams contributing about 80% of the total stream emission. Hence, our results provide evidence that forest streams can act as substantial N2 O sources in the landscape with 800 × 109 g CO2 -eq emitted annually in Sweden, equivalent to 25% of the total N2 O emissions from the Swedish agricultural sector.
Assuntos
Florestas , Óxido Nitroso , Fertilizantes , Solo , SuéciaRESUMO
The stability of northern peatland's carbon (C) store under changing climate is of major concern for the global C cycle. The aquatic export of C from boreal peatlands is recognized as both a critical pathway for the remobilization of peat C stocks as well as a major component of the net ecosystem C balance (NECB). Here, we present a full year characterization of radiocarbon content (14 C) of dissolved organic carbon (DOC), carbon dioxide (CO2 ), and methane (CH4 ) exported from a boreal peatland catchment coupled with 14 C characterization of the catchment's peat profile of the same C species. The age of aquatic C in runoff varied little throughout the year and appeared to be sustained by recently fixed C from the atmosphere (<60 years), despite stream DOC, CO2 , and CH4 primarily being sourced from deep peat horizons (2-4 m) near the mire's outlet. In fact, the 14 C content of DOC, CO2 , and CH4 across the entire peat profile was considerably enriched with postbomb C compared with the solid peat material. Overall, our results demonstrate little to no mobilization of ancient C stocks from this boreal peatland and a relatively large resilience of the source of aquatic C export to forecasted hydroclimatic changes.
Assuntos
Dióxido de Carbono/química , Carbono/química , Mudança Climática , Metano/química , Solo , Áreas Alagadas , Atmosfera , Ciclo do Carbono , Dióxido de Carbono/metabolismo , Monitoramento Ambiental , Gases , Metano/metabolismoRESUMO
In high-latitude regions, carbon dioxide (CO2 ) emissions during the winter represent an important component of the annual ecosystem carbon budget; however, the mechanisms that control the winter CO2 emissions are currently not well understood. It has been suggested that substrate availability from soil labile carbon pools is a main driver of winter CO2 emissions. In ecosystems that are dominated by annual herbaceous plants, much of the biomass produced during the summer is likely to contribute to the soil labile carbon pool through litter fall and root senescence in the autumn. Thus, the summer carbon uptake in the ecosystem may have a significant influence on the subsequent winter CO2 emissions. To test this hypothesis, we conducted a plot-scale shading experiment in a boreal peatland to reduce the gross primary production (GPP) during the growing season. At the growing season peak, vascular plant biomass in the shaded plots was half that in the control plots. During the subsequent winter, the mean CO2 emission rates were 21% lower in the shaded plots than in the control plots. In addition, long-term (2001-2012) eddy covariance data from the same site showed a strong correlation between the GPP (particularly the late summer and autumn GPP) and the subsequent winter net ecosystem CO2 exchange (NEE). In contrast, abiotic factors during the winter could not explain the interannual variation in the cumulative winter NEE. Our study demonstrates the presence of a cross-seasonal link between the growing season biotic processes and winter CO2 emissions, which has important implications for predicting winter CO2 emission dynamics in response to future climate change.
Assuntos
Ciclo do Carbono , Dióxido de Carbono/análise , Ecossistema , Estações do Ano , Solo/química , Mudança ClimáticaRESUMO
Tree stems exchange greenhouse gases with the atmosphere but the magnitude, variability and drivers of these fluxes remain poorly understood. Here, we report stem fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) in a boreal riparian forest, and investigate their spatiotemporal variability and ecosystem level importance. For two years, we measured CO2 and CH4 fluxes on a monthly basis in 14 spruces (Picea abies) and 14 birches (Betula pendula) growing near a headwater stream affected by historic ditching. We also measured N2O fluxes on three occasions. All tree stems were net emitters of CO2 and CH4, while N2O fluxes were around zero. CO2 fluxes correlated strongly with air temperature and peaked in summer. CH4 fluxes correlated modestly with air temperature and solar radiation and peaked in late winter and summer. Trees with larger stem diameter emitted more CO2 and less CH4 and trees closer to the stream emitted more CO2 and CH4. The CO2 and CH4 fluxes did not differ between spruce and birch, but correlations of CO2 fluxes with stem diameter and distance to stream differed between the tree species. The absence of vertical trends in CO2 and CH4 fluxes along the stems and their low correlation with groundwater levels and soil CO2 and CH4 partial pressures suggest tree internal production as the primary source of stem emissions. At the ecosystem level, the stem CO2, CH4 and N2O emissions represented 52 ± 16 % of the forest floor CO2 emissions and 3 ± 1 % and 11 ± 40 % of the forest floor CH4 and N2O uptake, respectively, during the snow-free period (median ± SE). The six month snow-cover period contributed 11 ± 45 % and 40 ± 29 % to annual stem CO2 and CH4 emissions, respectively. Overall, the stem gas fluxes were more typical for upland rather than wetland ecosystems likely due to historic ditching and subsequent groundwater level decrease.
RESUMO
The global soil carbon pool is approximately three times larger than the contemporary atmospheric pool, therefore even minor changes to its integrity may have major implications for atmospheric CO2 concentrations. While theory predicts that the chemical composition of organic matter should constitute a master control on the temperature response of its decomposition, this relationship has not yet been fully demonstrated. We used laboratory incubations of forest soil organic matter (SOM) and fresh litter material together with NMR spectroscopy to make this connection between organic chemical composition and temperature sensitivity of decomposition. Temperature response of decomposition in both fresh litter and SOM was directly related to the chemical composition of the constituent organic matter, explaining 90% and 70% of the variance in Q10 in litter and SOM, respectively. The Q10 of litter decreased with increasing proportions of aromatic and O-aromatic compounds, and increased with increased contents of alkyl- and O-alkyl carbons. In contrast, in SOM, decomposition was affected only by carbonyl compounds. To reveal why a certain group of organic chemical compounds affected the temperature sensitivity of organic matter decomposition in litter and SOM, a more detailed characterization of the (13) C aromatic region using Heteronuclear Single Quantum Coherence (HSQC) was conducted. The results revealed considerable differences in the aromatic region between litter and SOM. This suggests that the correlation between chemical composition of organic matter and the temperature response of decomposition differed between litter and SOM. The temperature response of soil decomposition processes can thus be described by the chemical composition of its constituent organic matter, this paves the way for improved ecosystem modeling of biosphere feedbacks under a changing climate.
Assuntos
Dióxido de Carbono/metabolismo , Ecossistema , Substâncias Húmicas , Solo/química , Temperatura , Mudança Climática , Espectroscopia de Ressonância Magnética , SuéciaRESUMO
A large proportion of the global soil carbon pool is stored in soils of high-latitude ecosystems in which microbial processes and production of greenhouse gases proceed during the winter months. It has been suggested that microorganisms have limited ability to sequester substrates at temperatures around and below 0 °C and that a metabolic shift to dominance of catabolic processes occurs around these temperatures. However, there are contrary indications that anabolic processes can proceed, because microbial growth has been observed at far lower temperatures. Therefore, we investigated the utilization of the microbial substrate under unfrozen and frozen conditions in a boreal forest soil across a temperature range from -9 °C to +9 °C, by using gas chromatography-isotopic ratio mass spectrometry and (13)C magic-angle spinning NMR spectroscopy to determine microbial turnover and incorporation of (13)C-labeled glucose. Our results conclusively demonstrate that the soil microorganisms maintain both catabolic (CO(2) production) and anabolic (biomass synthesis) processes under frozen conditions and that no significant differences in carbon allocation from [(13)C]glucose into [(13)C]CO(2) and cell organic (13)C-compounds occurred between +9 °C and -4 °C. The only significant metabolic changes detected were increased fluidity of the cell membranes synthesized at frozen conditions and increased production of glycerol in the frozen samples. The finding that the processes in frozen soil are similar to those in unfrozen soil has important implications for our general understanding and conceptualization of soil carbon dynamics in high-latitude ecosystems.
Assuntos
Aclimatação , Congelamento , Processos Heterotróficos , Microbiologia do Solo , Carbono/metabolismo , Temperatura Baixa , Glucose/metabolismo , Glicerol/análise , Espectroscopia de Ressonância Magnética , Estações do Ano , Solo , Árvores/microbiologiaRESUMO
Vegetation holds the key to many properties that make natural mires unique, such as surface microtopography, high biodiversity values, effective carbon sequestration and regulation of water and nutrient fluxes across the landscape. Despite this, landscape controls behind mire vegetation patterns have previously been poorly described at large spatial scales, which limits the understanding of basic drivers underpinning mire ecosystem services. We studied catchment controls on mire nutrient regimes and vegetation patterns using a geographically constrained natural mire chronosequence along the isostatically rising coastline in Northern Sweden. By comparing mires of different ages, we can partition vegetation patterns caused by long-term mire succession (<5000 years) and present-day vegetation responses to catchment eco-hydrological settings. We used the remote sensing based normalized difference vegetation index (NDVI) to describe mire vegetation and combined peat physicochemical measures with catchment properties to identify the most important factors that determine mire NDVI. We found strong evidence that mire NDVI depends on nutrient inputs from the catchment area or underlying mineral soil, especially concerning phosphorus and potassium concentrations. Steep mire and catchment slopes, dry conditions and large catchment areas relative to mire areas were associated with higher NDVI. We also found long-term successional patterns, with lower NDVI in older mires. Importantly, the NDVI should be used to describe mire vegetation patterns in open mires if the focus is on surface vegetation, since the canopy cover in tree-covered mires completely dominated the NDVI signal. With our study approach, we can quantitatively describe the connection between landscape properties and mire nutrient regime. Our results confirm that mire vegetation responds to the upslope catchment area, but importantly, also suggest that mire and catchment aging can override the role of catchment influence. This effect was clear across mires of all ages, but was strongest in younger mires.
Assuntos
Biodiversidade , Ecossistema , Humanos , Idoso , Árvores , Hidrologia , Telemetria , SoloRESUMO
High-latitude soils store ~40% of the global soil carbon and experience winters of up to 6 months or more. The winter soil CO2 efflux importantly contributes to the annual CO2 budget. Microorganisms can metabolize short chain carbon compounds in frozen soils. However, soil organic matter (SOM) is dominated by biopolymers, requiring exoenzymatic hydrolysis prior to mineralization. For winter SOM decomposition to have a substantial influence on soil carbon balances it is crucial whether or not biopolymers can be metabolized in frozen soils. We added 13C-labeled cellulose to frozen (-4 °C) mesocosms of boreal forest soil and followed its decomposition. Here we show that cellulose biopolymers are hydrolyzed under frozen conditions sustaining both CO2 production and microbial growth contributing to slow, but persistent, SOM mineralization. Given the long periods with frozen soils at high latitudes these findings are essential for understanding the contribution from winter to the global carbon balance.
Assuntos
Sequestro de Carbono , Carbono/química , Celulose/química , Microbiologia do Solo , Solo/química , Biopolímeros/química , Carboidratos/química , Dióxido de Carbono/química , Isótopos de Carbono , Ácidos Graxos/química , Florestas , Congelamento , Hidrólise , Nitrogênio/química , Compostos Orgânicos/química , Fosfolipídeos/química , Estações do Ano , TaigaRESUMO
Evasion of gaseous carbon (C) from streams is often poorly quantified in landscape C budgets. Even though the potential importance of the capillary network of streams as C conduits across the land-water-atmosphere interfaces is sometimes mentioned, low-order streams are often left out of budget estimates due to being poorly characterized in terms of gas exchange and even areal surface coverage. We show that evasion of C is greater than all the total dissolved C (both organic and inorganic) exported downstream in the waters of a boreal landscape. In this study evasion of carbon dioxide (CO2 ) from running waters within a 67 km(2) boreal catchment was studied. During a 4 year period (2006-2009) 13 streams were sampled on 104 different occasions for dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC). From a locally determined model of gas exchange properties, we estimated the daily CO2 evasion with a high-resolution (5 × 5 m) grid-based stream evasion model comprising the entire ~100 km stream network. Despite the low areal coverage of stream surface, the evasion of CO2 from the stream network constituted 53% (5.0 (±1.8) g C m(-2) yr(-1) ) of the entire stream C flux (9.6 (±2.4) g C m(-2) yr(-1) ) (lateral as DIC, DOC, and vertical as CO2 ). In addition, 72% of the total CO2 loss took place already in the first- and second-order streams. This study demonstrates the importance of including CO2 evasion from low-order boreal streams into landscape C budgets as it more than doubled the magnitude of the aquatic conduit for C from this landscape. Neglecting this term will consequently result in an overestimation of the terrestrial C sink strength in the boreal landscape.
Assuntos
Dióxido de Carbono/análise , Carbono/análise , Rios/química , Solo/análiseRESUMO
The aim of this investigation was to determine the lateral exportof dissolved inorganic carbon (DIC) from soils of a Swedish boreal forest to a first order stream and to estimate the partitioning of this DIC into CO2 evasion from the stream surface and the DIC pool exported down through the catchment by streamwater. The groundwater entering the stream was supersaturated with CO2 with values as high as 17 times equilibrium with the atmosphere. Up to 90% of the estimated daily soil DIC export to the stream was emitted to the atmosphere as CO2 within 200 m of the water entering the stream. The annual DIC export from the soil to the stream was estimated to be 3.2 (+/- 0.1) g C m(-2) yr(-1) (normalized to catchment size). Ninety percent of the variation in soil DIC export could be explained by the variation in groundwater discharge and the DIC concentrations per se, were of minor importance. A significant correlation (R(l) = 0.74, P < 0.01) between soil DIC export and CO2 emission from the stream surface suggests that emission dynamics were primarily driven by the export of terrestrial DIC and that in-stream processes were less important. Our results reveal that current budget estimates of lateral DIC export from soils to aquatic conduits need to be revised because they do not account for conditions prevailing in headwater streams. Any quantification of lateral stream C export and CO2 emissions from freshwater systems must include headwater streams as well as the lower parts of the aquatic conduit.
Assuntos
Carbono/química , Rios/química , Solo/análise , Regiões Árticas , Ecossistema , Monitoramento AmbientalRESUMO
To understand wintertime controls of biogeochemical processes in high latitude soils it is essential to distinguish between direct temperature effects and the effects of changes in water availability mediated by freezing. Efforts to separate these controls are hampered by a lack of adequate methods to determine the proportion of unfrozen water. In this study we present a high-field 2H2O NMR method for quantifying unfrozen water content in frozen soil. The experimental material consisted of the humic layer of a boreal spruce forest soil mixed with varying proportions of quartz sand and humidified with deuterium-enriched water. The relative standard deviation of unfrozen water content (measured as NMR signal integral) was less than 2% for repeated measurements on a given sample and 3.5% among all samples, based on a total of 16 measurements. As compared to 1H NMR, this 2H NMR method was found to be superior for several reasons: it is less sensitive to field inhomogeneity and paramagnetic impurities, it gives a bigger line shape difference between the ice and liquid signal, it shows a sharper response to water fusion, and it excludes the possibility of hydrogen in the organic material interfering with the measurement.
Assuntos
Solo/análise , Água/análise , Deutério , Congelamento , Substâncias Húmicas , Espectroscopia de Ressonância Magnética/métodos , SuéciaRESUMO
Recent investigations have highlighted the relative importance of the winter season for emissions of N(2)O from boreal soils. However, our understanding of the processes and environmental controls regulating these emissions is fragmentary. Therefore, we investigated the potential for, and relative importance of, N(2)O formation at temperatures below 0 degrees C in laboratory experiments involving incubations of a Swedish boreal forest soil. Our results show that frozen soils have a high potential for N(2)O formation and subsequent emission. Net N(2)O production rates at -4 degrees C equaled those observed at +10 to +15 degrees C at moisture contents >60% of the soil's water-holding capacity. The source of this N(2)O was found to be denitrification occurring in anoxic microsites in the frozen soil and temperature per se did not control the denitrification rates at temperatures around 0 degrees C. Furthermore, both net nitrogen-mineralisation and nitrification were observed in the frozen soil samples. Based on these findings we propose a conceptual model for the temperature response of N(2)O formation in soils at low temperatures.