Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Nature ; 577(7789): 199-203, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31915396

RESUMO

Bulk amorphous materials have been studied extensively and are widely used, yet their atomic arrangement remains an open issue. Although they are generally believed to be Zachariasen continuous random networks1, recent experimental evidence favours the competing crystallite model in the case of amorphous silicon2-4. In two-dimensional materials, however,  the corresponding questions remain unanswered. Here we report the synthesis, by laser-assisted chemical vapour deposition5, of centimetre-scale, free-standing, continuous and stable monolayer amorphous carbon, topologically distinct from disordered graphene. Unlike in bulk materials, the structure of monolayer amorphous carbon can be determined by atomic-resolution imaging. Extensive characterization by Raman and X-ray spectroscopy and transmission electron microscopy reveals the complete absence of long-range periodicity and a threefold-coordinated structure with a wide distribution of bond lengths, bond angles, and five-, six-, seven- and eight-member rings. The ring distribution is not a Zachariasen continuous random network, but resembles the competing (nano)crystallite model6. We construct a corresponding model that enables density-functional-theory calculations of the properties of monolayer amorphous carbon, in accordance with observations. Direct measurements confirm that it is insulating, with resistivity values similar to those of boron nitride grown by chemical vapour deposition. Free-standing monolayer amorphous carbon is surprisingly stable and deforms to a high breaking strength, without crack propagation from the point of fracture. The excellent physical properties of this stable, free-standing monolayer amorphous carbon could prove useful for permeation and diffusion barriers in applications such as magnetic recording devices and flexible electronics.

2.
Nat Mater ; 23(4): 479-485, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38216725

RESUMO

In anisotropic crystals, the direction-dependent effective mass of carriers can have a profound impact on spin transport dynamics. The puckered crystal structure of black phosphorus leads to direction-dependent charge transport and optical response, suggesting that it is an ideal system for studying anisotropic spin transport. To this end, we fabricate and characterize high-mobility encapsulated ultrathin black-phosphorus-based spin valves in a four-terminal geometry. Our measurements show that in-plane spin lifetimes are strongly gate tunable and exceed one nanosecond. Through high out-of-plane magnetic fields, we observe a fivefold enhancement in the out-of-plane spin signal case compared to in-plane and estimate a colossal spin-lifetime anisotropy of ∼6. This finding is further confirmed by oblique Hanle measurements. Additionally, we estimate an in-plane spin-lifetime anisotropy ratio of up to 1.8. Our observation of strongly anisotropic spin transport along three orthogonal axes in this pristine material could be exploited to realize directionally tunable spin transport.

3.
Nano Lett ; 20(10): 7572-7579, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32986443

RESUMO

Localized electrons subject to applied magnetic fields can restart to propagate freely through the lattice in delocalized magnetic Bloch states (MBSs) when the lattice periodicity is commensurate with the magnetic length. Twisted graphene superlattices with moiré wavelength tunability enable experimental access to the unique delocalization in a controllable fashion. Here, we report the observation and characterization of high-temperature Brown-Zak (BZ) oscillations which come in two types, 1/B and B periodicity, originating from the generation of integer and fractional MBSs, in the twisted bilayer and trilayer graphene superlattices, respectively. Coexisting periodic-in-1/B oscillations assigned to different moiré wavelengths are dramatically observed in small-angle twisted bilayer graphene, which may arise from angle-disorder-induced in-plane heteromoiré superlattices. Moreover, the vertical stacking of heteromoiré supercells in double-twisted trilayer graphene results in a mega-sized superlattice. The exotic superlattice contributes to the periodic-in-B oscillation and dominates the magnetic Bloch transport.

4.
Nano Lett ; 17(9): 5361-5367, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28792227

RESUMO

Because of the chemical inertness of two dimensional (2D) hexagonal-boron nitride (h-BN), few atomic-layer h-BN is often used to encapsulate air-sensitive 2D crystals such as black phosphorus (BP). However, the effects of h-BN on Schottky barrier height, doping, and contact resistance are not well-known. Here, we investigate these effects by fabricating h-BN encapsulated BP transistors with cobalt (Co) contacts. In sharp contrast to directly Co contacted p-type BP devices, we observe strong n-type conduction upon insertion of the h-BN at the Co/BP interface. First-principles calculations show that this difference arises from the much larger interface dipole at the Co/h-BN interface compared to the Co/BP interface, which reduces the work function of the Co/h-BN contact. The Co/h-BN contacts exhibit low contact resistances (∼4.5 kΩ) and are Schottky barrier-free. This allows us to probe high electron mobilities (4,200 cm2/(V s)) and observe insulator-metal transitions even under two-terminal measurement geometry.

5.
Nano Lett ; 16(4): 2145-51, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-26938106

RESUMO

Few-layer black phosphorus is a monatomic two-dimensional crystal with a direct band gap that has high carrier mobility for both holes and electrons. Similarly to other layered atomic crystals, like graphene or layered transition metal dichalcogenides, the transport behavior of few-layer black phosphorus is sensitive to surface impurities, adsorbates, and adatoms. Here we study the effect of Cu adatoms onto few-layer black phosphorus by characterizing few-layer black phosphorus field effect devices and by performing first-principles calculations. We find that the addition of Cu adatoms can be used to controllably n-dope few layer black phosphorus, thereby lowering the threshold voltage for n-type conduction without degrading the transport properties. We demonstrate a scalable 2D material-based complementary inverter which utilizes a boron nitride gate dielectric, a graphite gate, and a single bP crystal for both the p- and n-channels. The inverter operates at matched input and output voltages, exhibits a gain of 46, and does not require different contact metals or local electrostatic gating.

6.
Nano Lett ; 15(1): 319-25, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25493357

RESUMO

Reactivity control of graphene is an important issue because chemical functionalization can modulate graphene's unique mechanical, optical, and electronic properties. Using systematic optical studies, we demonstrate that van der Waals interaction is the dominant factor for the chemical reactivity of graphene on two-dimensional (2D) heterostructures. A significant enhancement in the chemical stability of graphene is achieved by replacing the common SiO2 substrate with 2D crystals such as an additional graphene layer, WS2, MoS2, or h-BN. Our theoretical and experimental results show that its origin is a strong van der Waals interaction between the graphene layer and the 2D substrate. This results in a high resistive force on graphene toward geometric lattice deformation. We also demonstrate that the chemical reactivity of graphene can be controlled by the relative lattice orientation with respect to the substrates and thus can be used for a wide range of applications including hydrogen storage.


Assuntos
Grafite/química , Modelos Químicos , Dissulfetos/química , Molibdênio/química , Dióxido de Silício/química , Compostos de Tungstênio/química
7.
Nano Lett ; 15(6): 3931-8, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-25939057

RESUMO

Bulk black phosphorus (BP) consists of puckered layers of phosphorus atoms. Few-layer BP, obtained from bulk BP by exfoliation, is an emerging candidate as a channel material in post-silicon electronics. A deep understanding of its physical properties and its full range of applications are still being uncovered. In this paper, we present a theoretical and experimental investigation of phonon properties in few-layer BP, focusing on the low-frequency regime corresponding to interlayer vibrational modes. We show that the interlayer breathing mode A(3)g shows a large redshift with increasing thickness; the experimental and theoretical results agree well. This thickness dependence is two times larger than that in the chalcogenide materials, such as few-layer MoS2 and WSe2, because of the significantly larger interlayer force constant and smaller atomic mass in BP. The derived interlayer out-of-plane force constant is about 50% larger than that of graphene and MoS2. We show that this large interlayer force constant arises from the sizable covalent interaction between phosphorus atoms in adjacent layers and that interlayer interactions are not merely of the weak van der Waals type. These significant interlayer interactions are consistent with the known surface reactivity of BP and have been shown to be important for electric-field induced formation of Dirac cones in thin film BP.

8.
Nano Lett ; 15(8): 4859-64, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26181908

RESUMO

We characterized plasmon propagation in graphene on thin films of the high-κ dielectric PbZr0.3Ti0.7O3 (PZT). Significant modulation (up to ±75%) of the plasmon wavelength was achieved with application of ultrasmall voltages (< ±1 V) across PZT. Analysis of the observed plasmonic fringes at the graphene edge indicates that carriers in graphene on PZT behave as noninteracting Dirac Fermions approximated by a semiclassical Drude response, which may be attributed to strong dielectric screening at the graphene/PZT interface. Additionally, significant plasmon scattering occurs at the grain boundaries of PZT from topographic and/or polarization induced graphene conductivity variation in the interior of graphene, reducing the overall plasmon propagation length. Lastly, through application of 2 V across PZT, we demonstrate the capability to persistently modify the plasmonic response of graphene through transient voltage application.

9.
Small ; 11(2): 189-94, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25179223

RESUMO

The production of large amounts of hydrogen bubbles, typical of electrochemical delamination methods based on the electrolysis of water, results in mechanical damage to graphene during the delamination, transfer, and drying steps. Here a novel 'bubble-free' delamination method is introduced which exploits the electrochemical dissolution of native copper oxide at a potential lower than that required for the formation of hydrogen bubbles, enabling the production of defect-free graphene stack.

10.
Nano Lett ; 14(5): 2730-4, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24749833

RESUMO

Ultrathin layers of semiconducting molybdenum disulfide (MoS2) offer significant prospects in future electronic and optoelectronic applications. Although an increasing number of experiments bring light into the electronic transport properties of these crystals, their thermoelectric properties are much less known. In particular, thermoelectricity in chemical vapor deposition grown MoS2, which is more practical for wafer-scale applications, still remains unexplored. Here, for the first time, we investigate these properties in grown single layer MoS2. Microfabricated heaters and thermometers are used to measure both electrical conductivity and thermopower. Large values of up to ∼30 mV/K at room temperature are observed, which are much larger than those observed in other two-dimensional crystals and bulk MoS2. The thermopower is strongly dependent on temperature and applied gate voltage with a large enhancement at the vicinity of the conduction band edge. We also show that the Seebeck coefficient follows S ∼ T(1/3), suggesting a two-dimensional variable range hopping mechanism in the system, which is consistent with electrical transport measurements. Our results help to understand the physics behind the electrical and thermal transports in MoS2 and the high thermopower value is of interest to future thermoelectronic research and application.

11.
Nano Lett ; 14(4): 1909-13, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24640984

RESUMO

Recent success in the growth of monolayer MoS2 via chemical vapor deposition (CVD) has opened up prospects for the implementation of these materials into thin film electronic and optoelectronic devices. Here, we investigate the electronic transport properties of individual crystallites of high quality CVD-grown monolayer MoS2. The devices show low temperature mobilities up to 500 cm(2) V(-1) s(-1) and a clear signature of metallic conduction at high doping densities. These characteristics are comparable to the electronic properties of the best mechanically exfoliated monolayers in literature, verifying the high electronic quality of the CVD-grown materials. We analyze the different scattering mechanisms and show that the short-range scattering plays a dominant role in the highly conducting regime at low temperatures. Additionally, the influence of optical phonons as a limiting factor is discussed.

12.
Nano Lett ; 14(5): 2677-80, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24773247

RESUMO

Significant progress has been made in the construction and theoretical understanding of molecular motors because of their potential use. Here, we have demonstrated fabrication of a simple but powerful 1 nm thick graphene engine. The engine comprises a high elastic membrane-piston made of graphene and weakly chemisorbed ClF3 molecules as the high power volume changeable actuator, while a 532 nm LASER acts as the ignition plug. Rapid volume expansion of the ClF3 molecules leads to graphene blisters. The size of the blister is controllable by changing the ignition parameters. The estimated internal pressure per expansion cycle of the engine is about ∼10(6) Pa. The graphene engine presented here shows exceptional reliability, showing no degradation after 10,000 cycles.

13.
Nat Nanotechnol ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641642

RESUMO

Plasmonic tunnel junctions are a unique electroluminescent system in which light emission occurs via an interplay between tunnelling electrons and plasmonic fields instead of electron-hole recombination as in conventional light-emitting diodes. It was previously shown that placing luminescent molecules in the tunneling pathway of nanoscopic tunnel junctions results in peculiar upconversion electroluminescence where the energy of emitted photons exceeds that of excitation electrons. Here we report the observation of upconversion electroluminescence in macroscopic van der Waals plasmonic tunnel junctions comprising gold and few-layer graphene electrodes separated by a ~2-nm-thick hexagonal boron nitride tunnel barrier and a monolayer semiconductor. We find that the semiconductor ground exciton emission is triggered at excitation electron energies lower than the semiconductor optical gap. Interestingly, this upconversion is reached in devices operating at a low conductance (<10-6 S) and low power density regime (<102 W cm-2), defying explanation through existing proposed mechanisms. By examining the scaling relationship between plasmonic and excitonic emission intensities, we elucidate the role of inelastic electron tunnelling dipoles that induce optically forbidden transitions in the few-layer graphene electrode and ultrafast hot carrier transfer across the van der Waals interface.

14.
Adv Mater ; : e2402628, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670114

RESUMO

A new nanoporous amorphous carbon (NAC) structure that achieves both ultrahigh strength and high electrical conductivity, which are usually incompatible in porous materials is reported. By using modified spark plasma sintering, three amorphous carbon phases with different atomic bonding configurations are created. The composite consisted of an amorphous sp2-carbon matrix mixed with amorphous sp3-carbon and amorphous graphitic motif. NAC structure has an isotropic electrical conductivity of up to 12 000 S m-1, Young's modulus of up to ≈5 GPa, and Vickers hardness of over 900 MPa. These properties are superior to those of existing conductive nanoporous materials. Direct investigation of the multiscale structure of this material through transmission electron microscopy, electron energy loss spectroscopy, and machine learning-based electron tomography revealed that the origin of the remarkable material properties is the well-organized sp2/sp3 amorphous carbon phases with a core-shell-like architecture, where the sp3-rich carbon forms a resilient core surrounded by a conductive sp2-rich layer. This research not only introduces novel materials with exceptional properties but also opens new opportunities for exploring amorphous structures and designing high-performance materials.

15.
Nanotechnology ; 24(47): 475202, 2013 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-24192319

RESUMO

We report the fabrication of a flexible graphene-based nonvolatile memory device using Pb(Zr0.35,Ti0.65)O3 (PZT) as the ferroelectric material. The graphene and PZT ferroelectric layers were deposited using chemical vapor deposition and sol­gel methods, respectively. Such PZT films show a high remnant polarization (Pr) of 30 µC cm−2 and a coercive voltage (Vc) of 3.5 V under a voltage loop over ±11 V. The graphene­PZT ferroelectric nonvolatile memory on a plastic substrate displayed an on/off current ratio of 6.7, a memory window of 6 V and reliable operation. In addition, the device showed one order of magnitude lower operation voltage range than organic-based ferroelectric nonvolatile memory after removing the anti-ferroelectric behavior incorporating an electrolyte solution. The devices showed robust operation in bent states of bending radii up to 9 mm and in cycling tests of 200 times. The devices exhibited remarkable mechanical properties and were readily integrated with plastic substrates for the production of flexible circuits.

16.
Nano Lett ; 11(6): 2363-8, 2011 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-21563787

RESUMO

We demonstrate injection, transport, and detection of spins in spin valve arrays patterned in both copper based chemical vapor deposition (Cu-CVD) synthesized wafer scale single layer and bilayer graphene. We observe spin relaxation times comparable to those reported for exfoliated graphene samples demonstrating that chemical vapor deposition specific structural differences such as nanoripples do not limit spin transport in the present samples. Our observations make Cu-CVD graphene a promising material of choice for large scale spintronic applications.


Assuntos
Cobre/química , Grafite/química , Tamanho da Partícula , Propriedades de Superfície
17.
Phys Rev Lett ; 105(16): 166602, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21230990

RESUMO

Recent experiments on ferroelectric gating have introduced a novel functionality, i.e., nonvolatility, in graphene field-effect transistors. A comprehensive understanding in the nonlinear, hysteretic ferroelectric gating and an effective way to control it are still absent. In this Letter, we quantitatively characterize the hysteretic ferroelectric gating using the reference of an independent background doping (n(BG)) provided by normal dielectric gating. More importantly, we prove that n(BG) can be used to control the ferroelectric gating by unidirectionally shifting the hysteretic ferroelectric doping in graphene. Utilizing this electrostatic effect, we demonstrate symmetrical bit writing in graphene-ferroelectric field-effect transistors with resistance change over 500% and reproducible no-volatile switching over 105 cycles.

18.
ACS Nano ; 14(6): 7280-7286, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32427466

RESUMO

Defect-free graphene is impermeable to gases and liquids but highly permeable to thermal protons. Atomic-scale defects such as vacancies, grain boundaries, and Stone-Wales defects are predicted to enhance graphene's proton permeability and may even allow small ions through, whereas larger species such as gas molecules should remain blocked. These expectations have so far remained untested in experiment. Here, we show that atomically thin carbon films with a high density of atomic-scale defects continue blocking all molecular transport, but their proton permeability becomes ∼1000 times higher than that of defect-free graphene. Lithium ions can also permeate through such disordered graphene. The enhanced proton and ion permeability is attributed to a high density of eight-carbon-atom rings. The latter pose approximately twice lower energy barriers for incoming protons compared to that of the six-atom rings of graphene and a relatively low barrier of ∼0.6 eV for Li ions. Our findings suggest that disordered graphene could be of interest as membranes and protective barriers in various Li-ion and hydrogen technologies.

19.
ACS Nano ; 11(11): 11678-11686, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29068661

RESUMO

The observation of micrometer size spin relaxation makes graphene a promising material for applications in spintronics requiring long-distance spin communication. However, spin dependent scatterings at the contact/graphene interfaces affect the spin injection efficiencies and hence prevent the material from achieving its full potential. While this major issue could be eliminated by nondestructive direct optical spin injection schemes, graphene's intrinsically low spin-orbit coupling strength and optical absorption place an obstacle in their realization. We overcome this challenge by creating sharp artificial interfaces between graphene and WSe2 monolayers. Application of circularly polarized light activates the spin-polarized charge carriers in the WSe2 layer due to its spin-coupled valley-selective absorption. These carriers diffuse into the superjacent graphene layer, transport over a 3.5 µm distance, and are finally detected electrically using Co/h-BN contacts in a nonlocal geometry. Polarization-dependent measurements confirm the spin origin of the nonlocal signal. We also demonstrate that such signal is absent if graphene is contacted to bilayer WSe2 where the inversion symmetry is restored.

20.
Adv Mater ; 28(21): 4090-6, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27028659

RESUMO

Enhanced photoresponse is obtained from phosphorene-phosphorene-suboxide. A scanning focused laser beam is employed as a straightforward approach to convert part of a phosphorene film into phosphorene suboxide, creating a functional junction in situ on an optoelectronic device based on phosphorene. As a result, the photoelectrical properties of the optoelectronic device are significantly improved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA