Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Med Inform Decis Mak ; 21(1): 84, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33663479

RESUMO

BACKGROUND: With a motivation of quality assurance, machine learning techniques were trained to classify Norwegian radiology reports of paediatric CT examinations according to their description of abnormal findings. METHODS: 13.506 reports from CT-scans of children, 1000 reports from CT scan of adults and 1000 reports from X-ray examination of adults were classified as positive or negative by a radiologist, according to the presence of abnormal findings. Inter-rater reliability was evaluated by comparison with a clinician's classifications of 500 reports. Test-retest reliability of the radiologist was performed on the same 500 reports. A convolutional neural network model (CNN), a bidirectional recurrent neural network model (bi-LSTM) and a support vector machine model (SVM) were trained on a random selection of the children's data set. Models were evaluated on the remaining CT-children reports and the adult data sets. RESULTS: Test-retest reliability: Cohen's Kappa = 0.86 and F1 = 0.919. Inter-rater reliability: Kappa = 0.80 and F1 = 0.885. Model performances on the Children-CT data were as follows. CNN: (AUC = 0.981, F1 = 0.930), bi-LSTM: (AUC = 0.978, F1 = 0.927), SVM: (AUC = 0.975, F1 = 0.912). On the adult data sets, the models had AUC around 0.95 and F1 around 0.91. CONCLUSIONS: The models performed close to perfectly on its defined domain, and also performed convincingly on reports pertaining to a different patient group and a different modality. The models were deemed suitable for classifying radiology reports for future quality assurance purposes, where the fraction of the examinations with abnormal findings for different sub-groups of patients is a parameter of interest.


Assuntos
Radiologia , Tomografia Computadorizada por Raios X , Adulto , Criança , Humanos , Redes Neurais de Computação , Radiografia , Reprodutibilidade dos Testes
2.
J Biomed Semantics ; 12(1): 11, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34261535

RESUMO

BACKGROUND: The limited availability of clinical texts for Natural Language Processing purposes is hindering the progress of the field. This article investigates the use of synthetic data for the annotation and automated extraction of family history information from Norwegian clinical text. We make use of incrementally developed synthetic clinical text describing patients' family history relating to cases of cardiac disease and present a general methodology which integrates the synthetically produced clinical statements and annotation guideline development. The resulting synthetic corpus contains 477 sentences and 6030 tokens. In this work we experimentally assess the validity and applicability of the annotated synthetic corpus using machine learning techniques and furthermore evaluate the system trained on synthetic text on a corpus of real clinical text, consisting of de-identified records for patients with genetic heart disease. RESULTS: For entity recognition, an SVM trained on synthetic data had class weighted precision, recall and F1-scores of 0.83, 0.81 and 0.82, respectively. For relation extraction precision, recall and F1-scores were 0.74, 0.75 and 0.74. CONCLUSIONS: A system for extraction of family history information developed on synthetic data generalizes well to real, clinical notes with a small loss of accuracy. The methodology outlined in this paper may be useful in other situations where limited availability of clinical text hinders NLP tasks. Both the annotation guidelines and the annotated synthetic corpus are made freely available and as such constitutes the first publicly available resource of Norwegian clinical text.


Assuntos
Aprendizado de Máquina , Processamento de Linguagem Natural , Humanos , Idioma
3.
Biomed Inform Insights ; 5(Suppl. 1): 99-103, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22879765

RESUMO

This paper describes a system developed for Track 2 of the 2011 Medical NLP Challenge on identifying emotions in suicide notes. Our approach involves learning a collection of one-versus-all classifiers, each deciding whether or not a particular label should be assigned to a given sentence. We explore a variety of features types-syntactic, semantic and surface-oriented. Cost-sensitive learning is used for dealing with the issue of class imbalance in the data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA