Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 21(4): 100219, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35219906

RESUMO

In the young field of single-cell proteomics (scMS), there is a great need for improved global proteome characterization, both in terms of proteins quantified per cell and quantitative performance thereof. The recently introduced real-time search (RTS) on the Orbitrap Eclipse Tribrid mass spectrometer in combination with SPS-MS3 acquisition has been shown to be beneficial for the measurement of samples that are multiplexed using isobaric tags. Multiplexed scMS requires high ion injection times and high-resolution spectra to quantify the single-cell signal; however, the carrier channel facilitates peptide identification and thus offers the opportunity for fast on-the-fly precursor filtering before committing to the time-intensive quantification scan. Here, we compared classical MS2 acquisition against RTS-SPS-MS3, both using the Orbitrap Eclipse Tribrid MS with the FAIMS Pro ion mobility interface and present a new acquisition strategy termed RETICLE (RTS enhanced quant of single cell spectra) that makes use of fast real-time searched linear ion trap scans to preselect MS1 peptide precursors for quantitative MS2 Orbitrap acquisition. We show that classical MS2 acquisition is outperformed by both RTS-SPS-MS3 through increased quantitative accuracy at similar proteome coverage, and RETICLE through higher proteome coverage, with the latter enabling the quantification of over 1000 proteins per cell at an MS2 injection time of 750 ms using a 2 h gradient.


Assuntos
Proteoma , Proteômica , Espectrometria de Massas , Peptídeos
2.
Anal Chem ; 95(36): 13649-13658, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37639361

RESUMO

Mass spectrometry-based bottom-up proteomics is rapidly evolving and routinely applied in large-scale biomedical studies. Proteases are a central component of every bottom-up proteomics experiment, digesting proteins into peptides. Trypsin has been the most widely applied protease in proteomics due to its characteristics. With ever-larger cohort sizes and possible future clinical application of mass spectrometry-based proteomics, the technical impact of trypsin becomes increasingly relevant. To assess possible biases introduced by trypsin digestion, we evaluated the impact of eight commercially available trypsins in a variety of bottom-up proteomics experiments and across a range of protease concentrations and storage times. To investigate the universal impact of these technical attributes, we included bulk HeLa cell lysate, human plasma, and single HEK293 cells, which were analyzed over a range of selected reaction monitoring (SRM), data-independent acquisition (DIA), and data-dependent acquisition (DDA) instrument methods on three LC-MS instruments. The quantification methods employed encompassed both label-free approaches and absolute quantification utilizing spike-in heavy-labeled recombinant protein fragment standards. Based on this extensive data set, we report variations between commercial trypsins, their source, and their concentration. Furthermore, we provide suggestions on the handling of trypsin in large-scale studies.


Assuntos
Peptídeo Hidrolases , Proteômica , Humanos , Tripsina , Células HEK293 , Células HeLa
3.
Nat Commun ; 14(1): 5910, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37737208

RESUMO

Single-cell resolution analysis of complex biological tissues is fundamental to capture cell-state heterogeneity and distinct cellular signaling patterns that remain obscured with population-based techniques. The limited amount of material encapsulated in a single cell however, raises significant technical challenges to molecular profiling. Due to extensive optimization efforts, single-cell proteomics by Mass Spectrometry (scp-MS) has emerged as a powerful tool to facilitate proteome profiling from ultra-low amounts of input, although further development is needed to realize its full potential. To this end, we carry out comprehensive analysis of orbitrap-based data-independent acquisition (DIA) for limited material proteomics. Notably, we find a fundamental difference between optimal DIA methods for high- and low-load samples. We further improve our low-input DIA method by relying on high-resolution MS1 quantification, thus enhancing sensitivity by more efficiently utilizing available mass analyzer time. With our ultra-low input tailored DIA method, we are able to accommodate long injection times and high resolution, while keeping the scan cycle time low enough to ensure robust quantification. Finally, we demonstrate the capability of our approach by profiling mouse embryonic stem cell culture conditions, showcasing heterogeneity in global proteomes and highlighting distinct differences in key metabolic enzyme expression in distinct cell subclusters.


Assuntos
Células-Tronco Embrionárias Murinas , Proteômica , Animais , Camundongos , Espectrometria de Massas , Proteoma , Análise de Célula Única
4.
Nat Commun ; 12(1): 3499, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108480

RESUMO

A hallmark of chromosome organization is the partition into transcriptionally active A and repressed B compartments, and into topologically associating domains (TADs). Both structures were regarded to be absent from the inactive mouse X chromosome, but to be re-established with transcriptional reactivation and chromatin opening during X-reactivation. Here, we combine a tailor-made mouse iPSC reprogramming system and high-resolution Hi-C to produce a time course combining gene reactivation, chromatin opening and chromosome topology during X-reactivation. Contrary to previous observations, we observe A/B-like compartments on the inactive X harbouring multiple subcompartments. While partial X-reactivation initiates within a compartment rich in X-inactivation escapees, it then occurs rapidly along the chromosome, concomitant with downregulation of Xist. Importantly, we find that TAD formation precedes transcription and initiates from Xist-poor compartments. Here, we show that TAD formation and transcriptional reactivation are causally independent during X-reactivation while establishing Xist as a common denominator.


Assuntos
Transcrição Gênica , Inativação do Cromossomo X/genética , Cromossomo X/metabolismo , Animais , Reprogramação Celular/genética , Montagem e Desmontagem da Cromatina , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Cromatina Sexual/genética , Cromatina Sexual/metabolismo , Cromossomo X/genética
5.
Nat Commun ; 12(1): 3341, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099695

RESUMO

Large-scale single-cell analyses are of fundamental importance in order to capture biological heterogeneity within complex cell systems, but have largely been limited to RNA-based technologies. Here we present a comprehensive benchmarked experimental and computational workflow, which establishes global single-cell mass spectrometry-based proteomics as a tool for large-scale single-cell analyses. By exploiting a primary leukemia model system, we demonstrate both through pre-enrichment of cell populations and through a non-enriched unbiased approach that our workflow enables the exploration of cellular heterogeneity within this aberrant developmental hierarchy. Our approach is capable of consistently quantifying ~1000 proteins per cell across thousands of individual cells using limited instrument time. Furthermore, we develop a computational workflow (SCeptre) that effectively normalizes the data, integrates available FACS data and facilitates downstream analysis. The approach presented here lays a foundation for implementing global single-cell proteomics studies across the world.


Assuntos
Proteômica/métodos , Análise de Célula Única/métodos , Humanos , Leucemia Mieloide Aguda , Espectrometria de Massas , Células-Tronco Neoplásicas , Proteoma/metabolismo , RNA , Fluxo de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA