Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 186
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Lipid Res ; 65(3): 100520, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38369184

RESUMO

Lipid amidases of therapeutic relevance include acid ceramidase (AC), N-acylethanolamine-hydrolyzing acid amidase, and fatty acid amide hydrolase (FAAH). Although fluorogenic substrates have been developed for the three enzymes and high-throughput methods for screening have been reported, a platform for the specific detection of these enzyme activities in intact cells is lacking. In this article, we report on the coumarinic 1-deoxydihydroceramide RBM1-151, a 1-deoxy derivative and vinilog of RBM14-C12, as a novel substrate of amidases. This compound is hydrolyzed by AC (appKm = 7.0 µM; appVmax = 99.3 nM/min), N-acylethanolamine-hydrolyzing acid amidase (appKm = 0.73 µM; appVmax = 0.24 nM/min), and FAAH (appKm = 3.6 µM; appVmax = 7.6 nM/min) but not by other ceramidases. We provide proof of concept that the use of RBM1-151 in combination with reported irreversible inhibitors of AC and FAAH allows the determination in parallel of the three amidase activities in single experiments in intact cells.


Assuntos
Amidoidrolases , Corantes Fluorescentes , Etanolaminas/química , Lipídeos
2.
J Enzyme Inhib Med Chem ; 38(1): 343-348, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36519337

RESUMO

Ceramide has a key role in the regulation of cellular senescence and apoptosis. As Ceramide levels are lowered by the action of acid ceramidase (AC), abnormally expressed in various cancers, the identification of AC inhibitors has attracted increasing interest. However, this finding has been mainly hampered by the lack of formats suitable for the screening of large libraries. We have overcome this drawback by adapting a fluorogenic assay to a 384-well plate format. The performance of this optimised platform has been proven by the screening a library of 4100 compounds. Our results show that the miniaturised platform is well suited for screening purposes and it led to the identification of several hits, that belong to different chemical classes and display potency ranges of 2-25 µM. The inhibitors also show selectivity over neutral ceramidase and retain activity in cells and can therefore serve as a basis for further chemical optimisation.


Assuntos
Ceramidase Ácida , Neoplasias , Humanos , Ceramidase Ácida/antagonistas & inibidores , Apoptose , Ceramidas/química , Bibliotecas de Moléculas Pequenas
3.
Int J Mol Sci ; 24(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38003373

RESUMO

The era of increasing bacterial antibiotic resistance requires new approaches to fight infections. With this purpose, silver-based nanomaterials are a reality in some fields and promise new developments. We report the green synthesis of silver nanoparticles (AgNPs) using culture broths from a microalga. Broths from two media, with different compositions and pHs and sampled at two growth phases, produced eight AgNP types. Nanoparticles harvested after several synthesis periods showed differences in antibacterial activity and stability. Moreover, an evaluation of the broths for several consecutive syntheses did not find relevant kinetics or activity differences until the third round. Physicochemical characteristics of the AgNPs (core and hydrodynamic sizes, Z-potential, crystallinity, and corona composition) were determined, observing differences depending on the broths used. AgNPs showed good antibacterial activity at concentrations producing no or low cytotoxicity on cultured eukaryotic cells. All the AgNPs had high levels of synergy against Escherichia coli and Staphylococcus aureus with the classic antibiotics streptomycin and kanamycin, but with ampicillin only against S. aureus and tetracycline against E. coli. Differences in the synergy levels were also dependent on the types of AgNPs. We also found that, for some AgNPs, the killing of bacteria started before the massive accumulation of ROS.


Assuntos
Nanopartículas Metálicas , Microalgas , Antibacterianos/química , Staphylococcus aureus , Espécies Reativas de Oxigênio , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Escherichia coli , Bactérias , Testes de Sensibilidade Microbiana
4.
J Org Chem ; 87(24): 16351-16367, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36441972

RESUMO

Ceramides (Cer) are bioactive sphingolipids that have been proposed as potential disease biomarkers since they are involved in several cellular stress responses, including apoptosis and senescence. 1-Deoxyceramides (1-deoxyCer), a particular subtype of noncanonical sphingolipids, have been linked to the pathogenesis of type II diabetes. To investigate the metabolism of these bioactive lipids, as well as to have a better understanding of the signaling processes where they participate, it is essential to expand the toolbox of fluorescent sphingolipid probes exhibiting complementary subcellular localization. Herein, we describe a series of new sphingolipid probes tagged with two different organic fluorophores, a far-red/NIR-emitting coumarin derivative (COUPY) and a green-emitting BODIPY. The assembly of the probes involved a combination of olefin cross metathesis and click chemistry reactions as key steps, and these fluorescent ceramide analogues exhibited excellent emission quantum yields, being the Stokes' shifts of the COUPY derivatives much higher than those of the BODIPY counterparts. Confocal microscopy studies in HeLa cells confirmed an excellent cellular permeability for these sphingolipid probes and revealed that most of the vesicles stained by COUPY probes were either lysosomes or endosomes, whereas BODIPY probes accumulated either in Golgi apparatus or in nonlysosomal intracellular vesicles. The fact that the two sets of fluorescent Cer probes have such different staining patterns indicates that their subcellular distribution is not entirely defined by the sphingolipid moiety but rather influenced by the fluorophore.


Assuntos
Ceramidas , Diabetes Mellitus Tipo 2 , Humanos , Ceramidas/química , Ceramidas/metabolismo , Células HeLa , Esfingolipídeos/química , Esfingolipídeos/metabolismo , Corantes Fluorescentes/química , Ionóforos
5.
Int J Mol Sci ; 23(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35806262

RESUMO

Methuosis is a type of programmed cell death in which the cytoplasm is occupied by fluid-filled vacuoles that originate from macropinosomes (cytoplasmic vacuolation). A few molecules have been reported to behave as methuosis inducers in cancer cell lines. Jaspine B (JB) is a natural anhydrous sphingolipid (SL) derivative reported to induce cytoplasmic vacuolation and cytotoxicity in several cancer cell lines. Here, we have investigated the mechanism and signalling pathways involved in the cytotoxicity induced by the natural sphingolipid Jaspine B (JB) in lung adenocarcinoma A549 cells, which harbor the G12S K-Ras mutant. The effect of JB on inducing cytoplasmic vacuolation and modifying cell viability was determined in A549 cells, as well as in mouse embryonic fibroblasts (MEF) lacking either the autophagy-related gene ATG5 or BAX/BAK genes. Apoptosis was analyzed by flow cytometry after annexin V/propidium iodide staining, in the presence and absence of z-VAD. Autophagy was monitored by LC3-II/GFP-LC3-II analysis, and autophagic flux experiments using protease inhibitors. Phase contrast, confocal, and transmission electron microscopy were used to monitor cytoplasmic vacuolation and the uptake of Lucifer yellow to assess macropinocyosis. We present evidence that cytoplasmic vacuolation and methuosis are involved in Jaspine B cytotoxicity over A549 cells and that activation of 5' AMP-activated protein kinase (AMPK) could be involved in Jaspine-B-induced vacuolation, independently of the phosphatidylinositol 3-kinase/protein kinase B/mechanistic target of rapamycin complex 1 (PI3K/Akt/mTORC1) axis.


Assuntos
Neoplasias , Fosfatidilinositol 3-Quinases , Animais , Apoptose , Autofagia , Morte Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Endossomos , Fibroblastos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Esfingolipídeos/farmacologia , Esfingosina/análogos & derivados
6.
Molecules ; 27(21)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36364415

RESUMO

Bacterial resistance to antibiotics is on the rise and hinders the fight against bacterial infections, which are expected to cause millions of deaths by 2050. New antibiotics are difficult to find, so alternatives are needed. One could be metal-based drugs, such as silver nanoparticles (AgNPs). In general, chemical methods for AgNPs' production are potentially toxic, and the physical ones expensive, while green approaches are not. In this paper, we present the green synthesis of AgNPs using two Pseudomonas alloputida B003 UAM culture broths, sampled from their exponential and stationary growth phases. AgNPs were physicochemically characterized by transmission electron microscopy (TEM), total reflection X-ray fluorescence (TXRF), infrared spectroscopy (FTIR), dynamic light scattering (DLS), and X-ray diffraction (XRD), showing differential characteristics depending on the synthesis method used. Antibacterial activity was tested in three assays, and we compared the growth and biofilm-formation inhibition of six test bacteria: Bacillus subtilis, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis. We also monitored nanoparticles' synergic behavior through the growth inhibition of E. coli and S. aureus by three classical antibiotics: ampicillin, nalidixic acid, and streptomycin. The results indicate that very good AgNP activity was obtained with particularly low MICs for the three tested strains of P. aeruginosa. A good synergistic effect on streptomycin activity was observed for all the nanoparticles. For ampicillin, a synergic effect was detected only against S. aureus. ROS production was found to be related to the AgNPs' antibacterial activity.


Assuntos
Antibacterianos , Nanopartículas Metálicas , Antibacterianos/química , Prata/farmacologia , Prata/química , Staphylococcus aureus , Nanopartículas Metálicas/química , Escherichia coli , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa , Bacillus subtilis , Biofilmes , Ampicilina/farmacologia , Estreptomicina/farmacologia , Extratos Vegetais/química
7.
Org Biomol Chem ; 19(11): 2456-2467, 2021 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-33650618

RESUMO

The suitability as FRET probes of two bichromophoric 1-deoxydihydroceramides containing a labelled spisulosine derivative as a sphingoid base and two differently ω-labelled fluorescent palmitic acids has been evaluated. The ceramide synthase (CerS) catalyzed metabolic incorporation of ω-azido palmitic acid into the above labeled spisulosine to render the corresponding ω-azido 1-deoxyceramide has been studied in several cell lines. In addition, the strain-promoted click reaction between this ω-azido 1-deoxyceramide and suitable fluorophores has been optimized to render the target bichromophoric 1-deoxydihydroceramides. These results pave the way for the development of FRET-based assays as a new tool to study sphingolipid metabolism.


Assuntos
Ceramidas/metabolismo , Corantes Fluorescentes/síntese química , Lipídeos/síntese química , Oxirredutases/metabolismo , Ácidos Palmíticos/química , Animais , Linhagem Celular , Química Click , Transferência Ressonante de Energia de Fluorescência , Humanos , Camundongos , Espectrometria de Fluorescência , Espectrometria de Massas em Tandem
8.
Angew Chem Int Ed Engl ; 60(4): 1782-1788, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33146444

RESUMO

The synthesis of a novel expanded π-conjugated system, namely benzotri(7-azaindole), BTAI, is reported. Its C3h symmetry along with the integration of six complementary donor and acceptor N-H⋅⋅⋅N hydrogen bonds in the conjugated structure promote the 2D self-assembly on Au(111) over extended areas. Besides, a perfect commensurability with the gold lattice endows the physisorbed molecular film with a remarkable stability. The structural features of BTAI result in two levels of surface chirality: Firstly, the molecules become chiral upon adsorption on the surface. Then, due to the favorable N-H⋅⋅⋅N hydrogen bond-directed self-assembly, along with the relative molecular rotation with respect to the substrate, supramolecular chirality manifests in two mirror enantiomorphous domains. Thus, the system undergoes spontaneous chiral resolution. LEED and STM assisted by theoretical simulations have been employed to characterize in detail these novel 2D conglomerates with relevant chiral properties for systems with C3h symmetry.

9.
Fungal Genet Biol ; 136: 103302, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31756382

RESUMO

The HOG MAP kinase pathway plays a crucial role in the response to different stresses in the opportunistic pathogen Candida albicans. The polyene amphotericin B (AMB) has been reported to trigger oxidative stress in several pathogenic fungi, including C. albicans. In the present work, we have analyzed the role of the MAPK Hog1 in sensing and survival to AMB treatment. Mutants lacking Hog1 are more susceptible to AMB than their parental strains and Hog1 became phosphorylated in the presence of this polyene. A set of mutated versions of Hog1 revealed that both the kinase activity and phosphorylation of Hog1 are required to cope with AMB treatment. Flow cytometry analysis showed that AMB induced intracellular ROS accumulation in both parental and hog1 null mutant strains. In addition, AMB triggered a Hog1-independent synthesis of trehalose. The addition of rotenone to AMB-treated cells improved cell viability, decreased intracellular ROS and prevented intracellular trehalose accumulation, suggesting that AMB-induced ROS is associated to a functional electron transport chain but the presence of rotenone did not impair Hog1 phosphorylation in AMB-treated cells. Our results indicate that Hog1 is necessary during AMB treatment to increase its survival.


Assuntos
Anfotericina B/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Espécies Reativas de Oxigênio/metabolismo , Trealose/metabolismo , Antifúngicos/farmacologia , Candida albicans/enzimologia , Proteínas Fúngicas/genética , Mutação , Fosforilação/efeitos dos fármacos
10.
Circ Res ; 123(5): 579-589, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-29921651

RESUMO

RATIONALE: Allogeneic cardiac stem cells (AlloCSC-01) have shown protective, immunoregulatory, and regenerative properties with a robust safety profile in large animal models of heart disease. OBJECTIVE: To investigate the safety and feasibility of early administration of AlloCSC-01 in patients with ST-segment-elevation myocardial infarction. METHODS AND RESULTS: CAREMI (Safety and Efficacy of Intracoronary Infusion of Allogeneic Human Cardiac Stem Cells in Patients With STEMI and Left Ventricular Dysfunction) was a phase I/II multicenter, randomized, double-blind, placebo-controlled trial in patients with ST-segment-elevation myocardial infarction, left ventricular ejection fraction ≤45%, and infarct size ≥25% of left ventricular mass by cardiac magnetic resonance, who were randomized (2:1) to receive AlloCSC-01 or placebo through the intracoronary route at days 5 to 7. The primary end point was safety and included all-cause death and major adverse cardiac events at 30 days (all-cause death, reinfarction, hospitalization because of heart failure, sustained ventricular tachycardia, ventricular fibrillation, and stroke). Secondary safety end points included major adverse cardiac events at 6 and 12 months, adverse events, and immunologic surveillance. Secondary exploratory efficacy end points were changes in infarct size (percentage of left ventricular mass) and indices of ventricular remodeling by magnetic resonance at 12 months. Forty-nine patients were included (92% male, 55±11 years), 33 randomized to AlloCSC-01 and 16 to placebo. No deaths or major adverse cardiac events were reported at 12 months. One severe adverse events in each group was considered possibly related to study treatment (allergic dermatitis and rash). AlloCSC-01 elicited low levels of donor-specific antibodies in 2 patients. No immune-related adverse events were found, and no differences between groups were observed in magnetic resonance-based efficacy parameters at 12 months. The estimated treatment effect of AlloCSC-01 on the absolute change from baseline in infarct size was -2.3% (95% confidence interval, -6.5% to 1.9%). CONCLUSIONS: AlloCSC-01 can be safely administered in ST-segment-elevation myocardial infarction patients with left ventricular dysfunction early after revascularization. Low immunogenicity and absence of immune-mediated events will facilitate adequately powered studies to demonstrate their clinical efficacy in this setting. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov . Unique identifier: NCT02439398.


Assuntos
Mioblastos Cardíacos/transplante , Infarto do Miocárdio/terapia , Transplante de Células-Tronco/métodos , Disfunção Ventricular Esquerda/terapia , Idoso , Feminino , Humanos , Infusões Intra-Arteriais , Masculino , Pessoa de Meia-Idade , Mioblastos Cardíacos/citologia , Infarto do Miocárdio/complicações , Transplante de Células-Tronco/efeitos adversos , Transplante Homólogo , Disfunção Ventricular Esquerda/complicações
11.
J Org Chem ; 85(2): 419-429, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31860798

RESUMO

The synthesis of a series of vinylated analogues of sphingosine-1-phosphate together with their unambiguous configurational assignment by VCD methods is reported. Among them, compound RBM10-8 can irreversibly inhibit human sphingosine-1-phosphate lyase (hS1PL) while behaving also as an enzyme substrate. These findings, together with the postulated mechanism for S1PL activity, reinforce the role of RBM10-8 as a new mechanism-based hS1PL inhibitor.


Assuntos
Aldeído Liases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Aldeído Liases/química , Sequência de Aminoácidos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Estrutura Molecular , Estereoisomerismo
12.
J Lipid Res ; 60(6): 1174-1181, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30926626

RESUMO

New fluorogenic ceramidase substrates derived from the N-acyl modification of our previously reported probes (RBM14) are reported. While none of the new probes were superior to the known RBM14C12 as acid ceramidase substrates, the corresponding nervonic acid amide (RBM14C24:1) is an efficient and selective substrate for the recombinant human neutral ceramidase, both in cell lysates and in intact cells. A second generation of substrates, incorporating the natural 2-(N-acylamino)-1,3-diol-4-ene framework (compounds RBM15) is also reported. Among them, the corresponding fatty acyl amides with an unsaturated N-acyl chain can be used as substrates to determine alkaline ceramidase (ACER)1 and ACER2 activities. In particular, compound RBM15C18:1 has emerged as the best fluorogenic probe reported so far to measure ACER1 and ACER2 activities in a 96-well plate format.


Assuntos
Ceramidase Alcalina/metabolismo , Esfingolipídeos/metabolismo , Umbeliferonas/metabolismo , Linhagem Celular , Ceramidas/metabolismo , Células HT29 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Espectroscopia de Ressonância Magnética , Microssomos/metabolismo , Estrutura Molecular , Proteínas de Ligação a RNA/metabolismo
13.
J Lipid Res ; 60(9): 1590-1602, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31363040

RESUMO

The combination of daunorubicin (dnr) and cytarabine (Ara-C) is a cornerstone of treatment for acute myelogenous leukemia (AML); resistance to these drugs is a major cause of treatment failure. Ceramide, a sphingolipid (SL), plays a critical role in cancer cell apoptosis in response to chemotherapy. Here, we investigated the effects of chemotherapy selection pressure with Ara-C and dnr on SL composition and enzyme activity in the AML cell line HL-60. Resistant cells, those selected for growth in Ara-C- and dnr-containing medium (HL-60/Ara-C and HL-60/dnr, respectively), demonstrated upregulated expression and activity of glucosylceramide synthase, acid ceramidase (AC), and sphingosine kinase 1 (SPHK1); were more resistant to ceramide than parental cells; and displayed sensitivity to inhibitors of SL metabolism. Lipidomic analysis revealed a general ceramide deficit and a profound upswing in levels of sphingosine 1-phosphate (S1P) and ceramide 1-phosphate (C1P) in HL-60/dnr cells versus parental and HL-60/Ara-C cells. Both chemotherapy-selected cells also exhibited comprehensive upregulations in mitochondrial biogenesis consistent with heightened reliance on oxidative phosphorylation, a property that was partially reversed by exposure to AC and SPHK1 inhibitors and that supports a role for the phosphorylation system in resistance. In summary, dnr and Ara-C selection pressure induces acute reductions in ceramide levels and large increases in S1P and C1P, concomitant with cell resilience bolstered by enhanced mitochondrial remodeling. Thus, strategic control of ceramide metabolism and further research to define mitochondrial perturbations that accompany the drug-resistant phenotype offer new opportunities for developing therapies that regulate cancer growth.


Assuntos
Mitocôndrias/metabolismo , Esfingolipídeos/metabolismo , Amidas/farmacologia , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ceramidases/metabolismo , Ceramidas/metabolismo , Ácidos Graxos Insaturados/farmacologia , Glucosiltransferases/metabolismo , Células HL-60 , Humanos , Immunoblotting , Lisofosfolipídeos/metabolismo , Espectrometria de Massas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Esfingosina/análogos & derivados , Esfingosina/metabolismo
14.
J Am Chem Soc ; 141(19): 7736-7742, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31030513

RESUMO

Acid ceramidase (AC) hydrolyzes ceramides into sphingoid bases and fatty acids. The enzyme is overexpressed in several types of cancer and Alzheimer's disease, and its genetic defect causes different incurable disorders. The availability of a method for the specific visualization of catalytically active AC in intracellular compartments is crucial for diagnosis and follow-up of therapeutic strategies in diseases linked to altered AC activity. This work was undertaken to develop activity-based probes for the detection of AC. Several analogues of the AC inhibitor SABRAC were synthesized and found to act as very potent (two-digit nM range) irreversible AC inhibitors by reaction with the active site Cys143. Detection of active AC in cell-free systems was achieved either by using fluorescent SABRAC analogues or by click chemistry with an azide-substituted analogue. The compound affording the best features allowed the unprecedented labeling of active AC in living cells.


Assuntos
Ceramidase Ácida/metabolismo , Imagem Molecular , Células A549 , Ceramidase Ácida/antagonistas & inibidores , Sobrevivência Celular , Inibidores Enzimáticos/farmacologia , Humanos , Sondas Moleculares/metabolismo
15.
Phys Chem Chem Phys ; 21(30): 16418-16422, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31332416

RESUMO

Cresyl and phenyl saligenin phosphates have been probed in a jet expansion by broadband chirp-excitation microwave spectroscopy, revealing the most stable conformations and their structural properties. The rotational parameters offer a high-resolution univocal route for characterization of organophosphorous agents and a testbed for computational models.

16.
Angew Chem Int Ed Engl ; 58(21): 6911-6915, 2019 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-30924239

RESUMO

The transport and trafficking of metabolites are critical for the correct functioning of live cells. However, in situ metabolic imaging studies are hampered by the lack of fluorescent chemical structures that allow direct monitoring of small metabolites under physiological conditions with high spatial and temporal resolution. Herein, we describe SCOTfluors as novel small-sized multi-colored fluorophores for real-time tracking of essential metabolites in live cells and in vivo and for the acquisition of metabolic profiles from human cancer cells of variable origin.


Assuntos
Corantes Fluorescentes/análise , Proteínas de Fluorescência Verde/metabolismo , Metaboloma , Imagem Molecular/métodos , Neoplasias/metabolismo , Células A549 , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Células HeLa , Humanos , Ionóforos , Microscopia de Fluorescência , Neoplasias/patologia
17.
Artigo em Inglês | MEDLINE | ID: mdl-29483123

RESUMO

Micafungin belongs to the antifungal family of echinocandins, which act as noncompetitive inhibitors of the fungal cell wall ß-1,3-d-glucan synthase. Since Candida albicans is the most prevalent pathogenic fungus in humans, we study the involvement of micafungin in the modulation of the inflammatory response developed by human tissue macrophages against C. albicans The MIC for micafungin was 0.016 µg/ml on the C. albicans SC5314 standard strain. Micafungin induced a drastic reduction in the number of exponential SC5314 viable cells, with the fungicidal effect being dependent on the cellular metabolic activity. Notably, micafungin also caused a structural remodelling of the cell wall, leading to exposure of the ß-glucan and chitin content on the external surface. At the higher doses used (0.05 µg/ml), the antifungal also induced the blowing up of budding yeasts. In addition, preincubation with micafungin before exposure to human tissue macrophages enhanced the secretion of tumor necrosis factor alpha (TNF-α), interleukin-17A (IL-17A), and IL-10 cytokines. Our results strongly suggest that in C. albicans treatment with micafungin, in addition to having the expected toxic antifungal effect, it potentiates the immune response, improving the interaction and activation of human macrophages, probably through the unmasking of ß-glucans on the cell wall surface.


Assuntos
Antifúngicos/uso terapêutico , Candida albicans/efeitos dos fármacos , Candida albicans/imunologia , Candidíase/tratamento farmacológico , Macrófagos/imunologia , Micafungina/uso terapêutico , Parede Celular/efeitos dos fármacos , Glucosiltransferases/antagonistas & inibidores , Humanos , Inflamação/tratamento farmacológico , Interleucina-10/metabolismo , Interleucina-17/metabolismo , Testes de Sensibilidade Microbiana , Fator de Necrose Tumoral alfa/metabolismo
18.
Langmuir ; 34(39): 11749-11758, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30183303

RESUMO

Sphingosine [(2 S,3 R,4 E)-2-amino-4-octadecene-1,3-diol] is the most common sphingoid base in mammals. Ceramides are N-acyl sphingosines. Numerous small variations on this canonical structure are known, including the 1-deoxy, the 4,5-dihydro, and many others. However, whenever there is a Δ4 double bond, it adopts the trans (or E) configuration. We synthesized a ceramide containing 4 Z-sphingosine and palmitic acid ( cis-pCer) and studied its behavior in the form of monolayers extended on an air-water interface. cis-pCer acted very differently from the trans isomer in that, upon lateral compression of the monolayer, a solid-solid transition was clearly observed at a mean molecular area ≤44 Å2·molecule-1, whose characteristics depended on the rate of compression. The solid-solid transition, as well as states of domain coexistence, could be imaged by atomic force microscopy and by Brewster-angle microscopy. Atomistic molecular dynamics simulations provided results compatible with the experimentally observed differences between the cis and trans isomers. The data can help in the exploration of other solid-solid transitions in lipids, both in vitro and in vivo, that have gone up to now undetected because of their less obvious change in surface properties along the transition, as compared to cis-pCer.

19.
Pharm Res ; 35(3): 49, 2018 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-29411122

RESUMO

PURPOSE: The induction of autophagy has recently been explored as a promising therapeutic strategy to combat Alzheimer's disease. Among many other factors, there is evidence that ceramides/dihydroceramides act as mediators of autophagy, although the exact mechanisms underlying such effects are poorly understood. Here, we describe how two dihydroceramide desaturase inhibitors (XM461 and XM462) trigger autophagy and reduce amyloid secretion by neurons. METHODS: Neurons isolated from wild-type and APP/PS1 transgenic mice were exposed to the two dihydroceramide desaturase inhibitors to assess their effect on these cell's protein and lipid profiles. RESULTS: Both dihydroceramide desaturase inhibitors increased the autophagic vesicles in wild-type neurons, reflected as an increase in LC3-II, and this was correlated with the accumulation of dihydroceramides and dihydrosphingomyelins. Exposing APP/PS1 transgenic neurons to these inhibitors also produced a 50% reduction in amyloid secretion and/or production. The lipidomic defects triggered by these dihydroceramide desaturase inhibitors were correlated with a loss of S6K activity, witnessed by the changes in S6 phosphorylation, which strongly suggested a reduction of mTORC1 activity. CONCLUSIONS: The data obtained strongly suggest that dihydroceramide desaturase 1 activity may modulate autophagy and mTORC1 activity in neurons, inhibiting amyloid secretion and S6K activity. As such, it is tantalizing to propose that dihydroceramide desaturase 1 may be an important therapeutic target to combat amyloidosis.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Inibidores Enzimáticos/farmacologia , Neurônios/efeitos dos fármacos , Oxirredutases/antagonistas & inibidores , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Animais , Autofagia/efeitos dos fármacos , Células Cultivadas , Ceramidas/farmacologia , Ceramidas/uso terapêutico , Cerebelo/citologia , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Modelos Animais de Doenças , Inibidores Enzimáticos/uso terapêutico , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Oxirredutases/uso terapêutico , Presenilina-1/genética , Cultura Primária de Células , Proteínas Quinases S6 Ribossômicas/metabolismo , Sulfetos/farmacologia , Sulfetos/uso terapêutico
20.
J Lipid Res ; 58(8): 1500-1513, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28572516

RESUMO

Sphingolipids (SLs) have been extensively investigated in biomedical research due to their role as bioactive molecules in cells. Here, we describe the effect of a SL analog, jaspine B (JB), a cyclic anhydrophytosphingosine found in marine sponges, on the gastric cancer cell line, HGC-27. JB induced alterations in the sphingolipidome, mainly the accumulation of dihydrosphingosine, sphingosine, and their phosphorylated forms due to inhibition of ceramide synthases. Moreover, JB provoked atypical cell death in HGC-27 cells, characterized by the formation of cytoplasmic vacuoles in a time and dose-dependent manner. Vacuoles appeared to originate from macropinocytosis and triggered cytoplasmic disruption. The pan-caspase inhibitor, z-VAD, did not alter either cytotoxicity or vacuole formation, suggesting that JB activates a caspase-independent cell death mechanism. The autophagy inhibitor, wortmannin, did not decrease JB-stimulated LC3-II accumulation. In addition, cell vacuolation induced by JB was characterized by single-membrane vacuoles, which are different from double-membrane autophagosomes. These findings suggest that JB-induced cell vacuolation is not related to autophagy and it is also independent of its action on SL metabolism.


Assuntos
Morte Celular/efeitos dos fármacos , Oxirredutases/antagonistas & inibidores , Esfingosina/análogos & derivados , Neoplasias Gástricas/patologia , Acilação/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Pinocitose/efeitos dos fármacos , Esfingosina/farmacologia , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA