Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 28(19): 28656-28671, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32988132

RESUMO

Multifocal plane microscopy allows for capturing images at different focal planes simultaneously. Using a proprietary prism which splits the emitted light into paths of different lengths, images at 8 different focal depths were obtained, covering a volume of 50x50x4 µm3. The position of single emitters was retrieved using a phasor-based approach across the different imaging planes, with better than 10 nm precision in the axial direction. We validated the accuracy of this approach by tracking fluorescent beads in 3D to calculate water viscosity. The fast acquisition rate (>100 fps) also enabled us to follow the capturing of 0.2 µm fluorescent beads into an optical trap.

2.
ACS Omega ; 9(8): 8862-8873, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38434835

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) is a multidrug-resistant bacterium with a global presence in healthcare facilities as well as community settings. The resistance of MRSA to beta-lactam antibiotics can be attributed to a mobile genetic element called the staphylococcal cassette chromosome mec (SCCmec), ranging from 23 to 68 kilobase pairs in length. The mec gene complex contained in SCCmec allows MRSA to survive in the presence of penicillin and other beta-lactam antibiotics. We demonstrate that optical mapping (OM) is able to identify the bacterium as S. aureus, followed by an investigation of the presence of kilobase pair range SCCmec elements by examining the associated OM-generated barcode patterns. By employing OM as an alternative to traditional DNA sequencing, we showcase its potential for the detection of complex genetic elements such as SCCmec in MRSA. This approach holds promise for enhancing our understanding of antibiotic resistance mechanisms and facilitating the development of targeted interventions against MRSA infections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA