Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 612(7939): 240-245, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36477133

RESUMO

Systems of correlated particles appear in many fields of modern science and represent some of the most intractable computational problems in nature. The computational challenge in these systems arises when interactions become comparable to other energy scales, which makes the state of each particle depend on all other particles1. The lack of general solutions for the three-body problem and acceptable theory for strongly correlated electrons shows that our understanding of correlated systems fades when the particle number or the interaction strength increases. One of the hallmarks of interacting systems is the formation of multiparticle bound states2-9. Here we develop a high-fidelity parameterizable fSim gate and implement the periodic quantum circuit of the spin-½ XXZ model in a ring of 24 superconducting qubits. We study the propagation of these excitations and observe their bound nature for up to five photons. We devise a phase-sensitive method for constructing the few-body spectrum of the bound states and extract their pseudo-charge by introducing a synthetic flux. By introducing interactions between the ring and additional qubits, we observe an unexpected resilience of the bound states to integrability breaking. This finding goes against the idea that bound states in non-integrable systems are unstable when their energies overlap with the continuum spectrum. Our work provides experimental evidence for bound states of interacting photons and discovers their stability beyond the integrability limit.

2.
Phys Rev Lett ; 112(4): 046602, 2014 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-24580475

RESUMO

We analyze the phase diagram of the zeroth Landau level of bilayer graphene, taking into account the realistic effects of screening of the Coulomb interaction and strong mixing between two degenerate sublevels. We identify robust quantum Hall states at filling factors ν=-1, -4/3, -5/3, -8/5, -1/2 and discuss the nature of their ground states, collective excitations, and relation to the more familiar states in GaAs using a tractable model. In particular, we present evidence that the ν=-1/2 state is non-Abelian and described by either the Moore-Read wave function or its particle-hole conjugate, while ruling out other candidates such as the 331 state.

3.
Phys Rev Lett ; 113(14): 147204, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25325656

RESUMO

We propose a method for detecting many-body localization (MBL) in disordered spin systems. The method involves pulsed coherent spin manipulations that probe the dephasing of a given spin due to its entanglement with a set of distant spins. It allows one to distinguish the MBL phase from a noninteracting localized phase and a delocalized phase. In particular, we show that for a properly chosen pulse sequence the MBL phase exhibits a characteristic power-law decay reflecting its slow growth of entanglement. We find that this power-law decay is robust with respect to thermal and disorder averaging, provide numerical simulations supporting our results, and discuss possible experimental realizations in solid-state and cold-atom systems.

4.
Nano Lett ; 13(8): 3631-7, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23834416

RESUMO

Recent measurements revealed an anomalous Coulomb drag in graphene, hinting at new physics at charge neutrality. The anomalous drag is explained by a new mechanism based on energy transport, which involves interlayer energy transfer, coupled to charge flow via lateral heat currents and thermopower. The old and new drag mechanisms are governed by distinct physical effects, resulting in starkly different behavior, in particular for drag magnitude and sign near charge neutrality. The new mechanism explains the giant enhancement of drag near charge neutrality, as well as its sign and anomalous sensitivity to the magnetic field. Under realistic conditions, energy transport dominates in a wide temperature range, giving rise to a universal value of drag which is essentially independent of the electron-electron interaction strength.

5.
Science ; 384(6691): 48-53, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38574139

RESUMO

Understanding universal aspects of quantum dynamics is an unresolved problem in statistical mechanics. In particular, the spin dynamics of the one-dimensional Heisenberg model were conjectured as to belong to the Kardar-Parisi-Zhang (KPZ) universality class based on the scaling of the infinite-temperature spin-spin correlation function. In a chain of 46 superconducting qubits, we studied the probability distribution of the magnetization transferred across the chain's center, [Formula: see text]. The first two moments of [Formula: see text] show superdiffusive behavior, a hallmark of KPZ universality. However, the third and fourth moments ruled out the KPZ conjecture and allow for evaluating other theories. Our results highlight the importance of studying higher moments in determining dynamic universality classes and provide insights into universal behavior in quantum systems.

6.
Phys Rev Lett ; 109(6): 066802, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-23006292

RESUMO

The electronic properties of graphene can be manipulated via mechanical deformations, which opens prospects for both studying the Dirac fermions in new regimes and for new device applications. Certain natural configurations of strain generate large nearly uniform pseudomagnetic fields, which have opposite signs in the two valleys, and give rise to flat spin- and valley-degenerate pseudo-Landau levels (PLLs). Here we consider the effect of the Coulomb interactions in strained graphene with a uniform pseudomagnetic field. We show that the spin or valley degeneracies of the PLLs get lifted by the interactions, giving rise to topological insulator states. In particular, when a nonzero PLL is quarter or three-quarter filled, an anomalous quantum Hall state spontaneously breaking time-reversal symmetry emerges. At half-filled PLLs, a weak spin-orbital interaction stabilizes the time-reversal-symmetric quantum spin-Hall state. These many-body states are characterized by the quantized conductance and persist to a high temperature scale set by the Coulomb interactions, which we estimate to be a few hundreds Kelvin at moderate strain values. At fractional fillings, fractional quantum Hall states breaking valley symmetry emerge. These results suggest a new route to realizing robust topological states in mesoscopic graphene.

7.
Phys Rev Lett ; 107(17): 176602, 2011 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-22107550

RESUMO

The recent discovery of fractional quantum Hall (FQH) states in graphene raises the question of whether the physics of graphene offers any advantages over GaAs-based materials in exploring strongly correlated states of two-dimensional electrons. Here we propose a method to continuously tune the effective electron interactions in graphene and its bilayer by the dielectric environment of the sample. Using this method, the charge gaps of prominent FQH states, including ν=1/3 or ν=5/2 states, can be increased several times, or reduced to zero. The tunability of the interactions can be used to realize and stabilize various strongly correlated phases and explore the transitions between them.

8.
Phys Rev Lett ; 106(13): 136802, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21517405

RESUMO

We study collective behavior of magnetic adatoms randomly distributed on the surface of a topological insulator. Interactions of an ensemble of adatoms are frustrated, as the RKKY-type interactions of two adatom spins depend on the directions of spins relative to the vector connecting them. We show that at low temperatures the frustrated RKKY interactions give rise to two phases: an ordered ferromagnetic phase with spins pointing perpendicular to the surface, and a disordered spin-glass-like phase. The two phases are separated by a quantum phase transition driven by the magnetic exchange anisotropy. The ordered phase breaks time-reversal symmetry spontaneously, driving the surface states into a gapped state, which exhibits an anomalous quantum Hall effect and provides a realization of the parity anomaly. We find that the magnetic ordering is suppressed by potential scattering.

9.
Phys Rev Lett ; 107(8): 087204, 2011 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-21929202

RESUMO

Recent numerical work [Z. Y. Meng et al., Nature (London) 464, 847 (2010)] indicates the existence of a spin liquid (SL) phase that intervenes between the antiferromagnetic and semimetallic phases of the half filled Hubbard model on a honeycomb lattice. To better understand the nature of this exotic phase, we study the quantum J(1)-J(2) spin model on the honeycomb lattice, which provides an effective description of the Mott insulating region of the Hubbard model. Employing the variational Monte Carlo approach, we analyze the phase diagram of the model. We find three phases-antiferromagnetic, an unusual Z(2) SL state, and a dimerized state with spontaneously broken rotational symmetry. We identify the Z(2) SL state as the likely candidate for the SL phase of the Hubbard model.

10.
Phys Rev Lett ; 107(9): 096601, 2011 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-21929257

RESUMO

We propose a new approach to generate and detect spin currents in graphene, based on a large spin-Hall response arising near the neutrality point in the presence of an external magnetic field. Spin currents result from the imbalance of the Hall resistivity for the spin-up and spin-down carriers induced by the Zeeman interaction, and do not involve a spin-orbit interaction. Large values of the spin-Hall response achievable in moderate magnetic fields produced by on-chip sources, and up to room temperature, make the effect viable for spintronics applications.

11.
Phys Rev Lett ; 105(8): 086802, 2010 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-20868123

RESUMO

Functionalizing graphene was recently shown to have a dramatic effect on the electronic properties of this material. Here we investigate spatial ordering of adatoms driven by the RKKY-type interactions. In the ordered state, which arises via a Peierls-instability-type mechanism, the adatoms reside mainly on one of the two graphene sublattices. Bragg scattering of electron waves induced by sublattice symmetry breaking results in a band gap opening, whereby Dirac fermions acquire a finite mass. The band gap is found to be immune to the adatoms' positional disorder, with only an exponentially small number of localized states residing in the gap. The gapped state is stabilized in a wide range of electron doping. Our findings show that controlled adsorption of adatoms or molecules provides a route to engineering a tunable band gap in graphene.

12.
Nat Commun ; 7: 11994, 2016 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-27312285

RESUMO

Topological quantum phases cannot be characterized by Ginzburg-Landau type order parameters, and are instead described by non-local topological invariants. Experimental platforms capable of realizing such exotic states now include synthetic many-body systems such as ultracold atoms or photons. Unique tools available in these systems enable a new characterization of strongly correlated many-body states. Here we propose a general scheme for detecting topological order using interferometric measurements of elementary excitations. The key ingredient is the use of mobile impurities that bind to quasiparticles of a host many-body system. Specifically, we show how fractional charges can be probed in the bulk of fractional quantum Hall systems. We demonstrate that combining Ramsey interference with Bloch oscillations can be used to measure Chern numbers characterizing the dispersion of individual quasiparticles, which gives a direct probe of their fractional charges. Possible extensions of our method to other many-body systems, such as spin liquids, are conceivable.

13.
Science ; 332(6027): 328-30, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21493852

RESUMO

Transport measurements have been a powerful tool for discovering electronic phenomena in graphene. We report nonlocal measurements performed in the Hall bar geometry with voltage probes far away from the classical path of charge flow. We observed a large nonlocal response near the Dirac point in fields as low as 0.1 tesla, which persisted up to room temperature. The nonlocality is consistent with the long-range flavor currents induced by the lifting of spin/valley degeneracy. The effect is expected to contribute strongly to all magnetotransport phenomena near the neutrality point.

14.
Philos Trans A Math Phys Eng Sci ; 368(1932): 5403-16, 2010 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-21041221

RESUMO

Recently, fractional quantization of two-terminal conductance was reported in suspended graphene. The quantization, which was clearly visible in fields as low as 2 T and persistent up to 20 K in 12 T, was attributed to the formation of an incompressible fractional quantum Hall state. Here, we argue that the failure of earlier experiments to detect the integer and fractional quantum Hall effect with a Hall-bar lead geometry is a consequence of the invasive character of voltage probes in mesoscopic samples, which are easily shorted out owing to the formation of hot spots near the edges of the sample. This conclusion is supported by a detailed comparison with a solvable transport model. We also consider, and rule out, an alternative interpretation of the quantization in terms of the formation of a p-n-p junction, which could result from contact doping or density inhomogeneity. Finally, we discuss the estimate of the quasi-particle gap of the quantum Hall state. The gap value, obtained from the transport data using a conformal mapping technique, is considerably larger than in GaAs-based two-dimensional electron systems, reflecting the stronger Coulomb interactions in graphene.

15.
Phys Rev Lett ; 103(7): 076802, 2009 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-19792672

RESUMO

Quantum Hall states that result from interaction induced lifting of the eightfold degeneracy of the zeroth Landau level in bilayer graphene are considered. We show that at even filling factors electric charge is injected into the system in the form of charge 2e Skyrmions. This is a rare example of binding of charges in a system with purely repulsive interactions. We calculate the Skyrmion energy and size as a function of the effective Zeeman interaction and discuss the signatures of the charge 2e Skyrmions in the scanning probe experiments.

16.
Science ; 317(5838): 641-3, 2007 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-17600182

RESUMO

Recent experimental work on locally gated graphene layers resulting in p-n junctions has revealed the quantum Hall effect in their transport behavior. We explain the observed conductance quantization, which is fractional in the bipolar regime and an integer in the unipolar regime, in terms of quantum Hall edge modes propagating along and across the p-n interface. In the bipolar regime, the electron and hole modes can mix at the p-n boundary, leading to current partition and quantized shot-noise plateaus similar to those of conductance, whereas in the unipolar regime transport is noiseless. These quantum Hall phenomena reflect the massless Dirac character of charge carriers in graphene, with particle/hole interplay manifest in mode mixing and noise in the bipolar regime.

17.
Phys Rev Lett ; 94(18): 186803, 2005 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-15904393

RESUMO

Fermi-edge singularity changes in a nonequilibrium system, acquiring features that reflect the structure of energy distribution. In particular, it splits into several components if the energy distribution exhibits multiple steps. While conventional approaches, such as bosonization, fail to describe the nonequilibrium problem, an exact solution for a generic energy distribution can be obtained with the help of the method of functional determinants. In the case of a split Fermi distribution, the "open loop" part of the Greens function possesses power law singularities. At the same time, the resulting tunneling density of states exhibits broadened peaks centered at Fermi sublevels.

18.
Phys Rev Lett ; 93(12): 126802, 2004 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-15447296

RESUMO

Resonant tunneling in an open mesoscopic quantum dot is proposed as a vehicle to realize a tunable Fermi-edge resonance with variable coupling strength. We solve the x-ray edge problem for a generic nonseparable scatterer and apply it to describe tunneling in a quantum dot. The tunneling current power law exponent is linked to the S matrix of the dot. The control of scattering by varying the dot shape and coupling to the leads allows us to explore a wide range of exponents. The sensitivity of mesoscopic coherence to the Wigner-Dyson ensemble symmetry is replicated in the Fermi-edge singularity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA