Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Chaos ; 33(10)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37788385

RESUMO

Drawing on ergodic theory, we introduce a novel training method for machine learning based forecasting methods for chaotic dynamical systems. The training enforces dynamical invariants-such as the Lyapunov exponent spectrum and the fractal dimension-in the systems of interest, enabling longer and more stable forecasts when operating with limited data. The technique is demonstrated in detail using reservoir computing, a specific kind of recurrent neural network. Results are given for the Lorenz 1996 chaotic dynamical system and a spectral quasi-geostrophic model of the atmosphere, both typical test cases for numerical weather prediction.

2.
Neural Comput ; 34(7): 1545-1587, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35671464

RESUMO

Using methods from nonlinear dynamics and interpolation techniques from applied mathematics, we show how to use data alone to construct discrete time dynamical rules that forecast observed neuron properties. These data may come from simulations of a Hodgkin-Huxley (HH) neuron model or from laboratory current clamp experiments. In each case, the reduced-dimension, data-driven forecasting (DDF) models are shown to predict accurately for times after the training period. When the available observations for neuron preparations are, for example, membrane voltage V(t) only, we use the technique of time delay embedding from nonlinear dynamics to generate an appropriate space in which the full dynamics can be realized. The DDF constructions are reduced-dimension models relative to HH models as they are built on and forecast only observables such as V(t). They do not require detailed specification of ion channels, their gating variables, and the many parameters that accompany an HH model for laboratory measurements, yet all of this important information is encoded in the DDF model. As the DDF models use and forecast only voltage data, they can be used in building networks with biophysical connections. Both gap junction connections and ligand gated synaptic connections among neurons involve presynaptic voltages and induce postsynaptic voltage response. Biophysically based DDF neuron models can replace other reduced-dimension neuron models, say, of the integrate-and-fire type, in developing and analyzing large networks of neurons. When one does have detailed HH model neurons for network components, a reduced-dimension DDF realization of the HH voltage dynamics may be used in network computations to achieve computational efficiency and the exploration of larger biological networks.


Assuntos
Modelos Neurológicos , Neurônios , Potenciais de Ação/fisiologia , Biofísica , Canais Iônicos , Neurônios/fisiologia , Dinâmica não Linear
3.
Chaos ; 31(12): 123118, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34972341

RESUMO

Reservoir computers (RCs) are a class of recurrent neural networks (RNNs) that can be used for forecasting the future of observed time series data. As with all RNNs, selecting the hyperparameters in the network to yield excellent forecasting presents a challenge when training on new inputs. We analyze a method based on predictive generalized synchronization (PGS) that gives direction in designing and evaluating the architecture and hyperparameters of an RC. To determine the occurrences of PGS, we rely on the auxiliary method to provide a computationally efficient pre-training test that guides hyperparameter selection. We provide a metric for evaluating the RC using the reproduction of the input system's Lyapunov exponents that demonstrates robustness in prediction.


Assuntos
Redes Neurais de Computação , Previsões , Fatores de Tempo
4.
Neural Comput ; 31(10): 2004-2024, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31393828

RESUMO

Tasking machine learning to predict segments of a time series requires estimating the parameters of a ML model with input/output pairs from the time series. We borrow two techniques used in statistical data assimilation in order to accomplish this task: time-delay embedding to prepare our input data and precision annealing as a training method. The precision annealing approach identifies the global minimum of the action (-log[P]). In this way, we are able to identify the number of training pairs required to produce good generalizations (predictions) for the time series. We proceed from a scalar time series s(tn);tn=t0+nΔt and, using methods of nonlinear time series analysis, show how to produce a DE>1-dimensional time-delay embedding space in which the time series has no false neighbors as does the observed s(tn) time series. In that DE-dimensional space, we explore the use of feedforward multilayer perceptrons as network models operating on DE-dimensional input and producing DE-dimensional outputs.

5.
Neural Comput ; 30(8): 2025-2055, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29894650

RESUMO

We formulate an equivalence between machine learning and the formulation of statistical data assimilation as used widely in physical and biological sciences. The correspondence is that layer number in a feedforward artificial network setting is the analog of time in the data assimilation setting. This connection has been noted in the machine learning literature. We add a perspective that expands on how methods from statistical physics and aspects of Lagrangian and Hamiltonian dynamics play a role in how networks can be trained and designed. Within the discussion of this equivalence, we show that adding more layers (making the network deeper) is analogous to adding temporal resolution in a data assimilation framework. Extending this equivalence to recurrent networks is also discussed. We explore how one can find a candidate for the global minimum of the cost functions in the machine learning context using a method from data assimilation. Calculations on simple models from both sides of the equivalence are reported. Also discussed is a framework in which the time or layer label is taken to be continuous, providing a differential equation, the Euler-Lagrange equation and its boundary conditions, as a necessary condition for a minimum of the cost function. This shows that the problem being solved is a two-point boundary value problem familiar in the discussion of variational methods. The use of continuous layers is denoted "deepest learning." These problems respect a symplectic symmetry in continuous layer phase space. Both Lagrangian versions and Hamiltonian versions of these problems are presented. Their well-studied implementation in a discrete time/layer, while respecting the symplectic structure, is addressed. The Hamiltonian version provides a direct rationale for backpropagation as a solution method for a certain two-point boundary value problem.

6.
Chaos ; 27(12): 126802, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29289057

RESUMO

Networks of nonlinear systems contain unknown parameters and dynamical degrees of freedom that may not be observable with existing instruments. From observable state variables, we want to estimate the connectivity of a model of such a network and determine the full state of the model at the termination of a temporal observation window during which measurements transfer information to a model of the network. The model state at the termination of a measurement window acts as an initial condition for predicting the future behavior of the network. This allows the validation (or invalidation) of the model as a representation of the dynamical processes producing the observations. Once the model has been tested against new data, it may be utilized as a predictor of responses to innovative stimuli or forcing. We describe a general framework for the tasks involved in the "inverse" problem of determining properties of a model built to represent measured output from physical, biological, or other processes when the measurements are noisy, the model has errors, and the state of the model is unknown when measurements begin. This framework is called statistical data assimilation and is the best one can do in estimating model properties through the use of the conditional probability distributions of the model state variables, conditioned on observations. There is a very broad arena of applications of the methods described. These include numerical weather prediction, properties of nonlinear electrical circuitry, and determining the biophysical properties of functional networks of neurons. Illustrative examples will be given of (1) estimating the connectivity among neurons with known dynamics in a network of unknown connectivity, and (2) estimating the biophysical properties of individual neurons in vitro taken from a functional network underlying vocalization in songbirds.

7.
J Neurophysiol ; 116(5): 2405-2419, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27535375

RESUMO

We propose a functional architecture of the adult songbird nucleus HVC in which the core element is a "functional syllable unit" (FSU). In this model, HVC is organized into FSUs, each of which provides the basis for the production of one syllable in vocalization. Within each FSU, the inhibitory neuron population takes one of two operational states: 1) simultaneous firing wherein all inhibitory neurons fire simultaneously, and 2) competitive firing of the inhibitory neurons. Switching between these basic modes of activity is accomplished via changes in the synaptic strengths among the inhibitory neurons. The inhibitory neurons connect to excitatory projection neurons such that during state 1 the activity of projection neurons is suppressed, while during state 2 patterns of sequential firing of projection neurons can occur. The latter state is stabilized by feedback from the projection to the inhibitory neurons. Song composition for specific species is distinguished by the manner in which different FSUs are functionally connected to each other. Ours is a computational model built with biophysically based neurons. We illustrate that many observations of HVC activity are explained by the dynamics of the proposed population of FSUs, and we identify aspects of the model that are currently testable experimentally. In addition, and standing apart from the core features of an FSU, we propose that the transition between modes may be governed by the biophysical mechanism of neuromodulation.


Assuntos
Encéfalo/fisiologia , Geradores de Padrão Central/fisiologia , Modelos Neurológicos , Vocalização Animal/fisiologia , Animais , Rede Nervosa/fisiologia , Inibição Neural/fisiologia , Aves Canoras
9.
Biol Cybern ; 110(6): 417-434, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27688218

RESUMO

With the goal of building a model of the HVC nucleus in the avian song system, we discuss in detail a model of HVC[Formula: see text] projection neurons comprised of a somatic compartment with fast Na[Formula: see text] and K[Formula: see text] currents and a dendritic compartment with slower Ca[Formula: see text] dynamics. We show this model qualitatively exhibits many observed electrophysiological behaviors. We then show in numerical procedures how one can design and analyze feasible laboratory experiments that allow the estimation of all of the many parameters and unmeasured dynamical variables, given observations of the somatic voltage [Formula: see text] alone. A key to this procedure is to initially estimate the slow dynamics associated with Ca, blocking the fast Na and K variations, and then with the Ca parameters fixed estimate the fast Na and K dynamics. This separation of time scales provides a numerically robust method for completing the full neuron model, and the efficacy of the method is tested by prediction when observations are complete. The simulation provides a framework for the slice preparation experiments and illustrates the use of data assimilation methods for the design of those experiments.


Assuntos
Modelos Neurológicos , Neurônios , Aves Canoras , Animais , Dendritos
10.
J Physiol ; 593(4): 763-74, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25433077

RESUMO

Cardiac rhythm management devices provide therapies for both arrhythmias and resynchronisation but not heart failure, which affects millions of patients worldwide. This paper reviews recent advances in biophysics and mathematical engineering that provide a novel technological platform for addressing heart disease and enabling beat-to-beat adaptation of cardiac pacing in response to physiological feedback. The technology consists of silicon hardware central pattern generators (hCPGs) that may be trained to emulate accurately the dynamical response of biological central pattern generators (bCPGs). We discuss the limitations of present CPGs and appraise the advantages of analog over digital circuits for application in bioelectronic medicine. To test the system, we have focused on the cardio-respiratory oscillators in the medulla oblongata that modulate heart rate in phase with respiration to induce respiratory sinus arrhythmia (RSA). We describe here a novel, scalable hCPG comprising physiologically realistic (Hodgkin-Huxley type) neurones and synapses. Our hCPG comprises two neurones that antagonise each other to provide rhythmic motor drive to the vagus nerve to slow the heart. We show how recent advances in modelling allow the motor output to adapt to physiological feedback such as respiration. In rats, we report on the restoration of RSA using an hCPG that receives diaphragmatic electromyography input and use it to stimulate the vagus nerve at specific time points of the respiratory cycle to slow the heart rate. We have validated the adaptation of stimulation to alterations in respiratory rate. We demonstrate that the hCPG is tuneable in terms of the depth and timing of the RSA relative to respiratory phase. These pioneering studies will now permit an analysis of the physiological role of RSA as well as its any potential therapeutic use in cardiac disease.


Assuntos
Doenças Cardiovasculares/terapia , Geradores de Padrão Central , Silício , Animais , Frequência Cardíaca , Humanos , Periodicidade
11.
Chaos ; 25(5): 053108, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26026320

RESUMO

Most data based state and parameter estimation methods require suitable initial values or guesses to achieve convergence to the desired solution, which typically is a global minimum of some cost function. Unfortunately, however, other stable solutions (e.g., local minima) may exist and provide suboptimal or even wrong estimates. Here, we demonstrate for a 9-dimensional Lorenz-96 model how to characterize the basin size of the global minimum when applying some particular optimization based estimation algorithm. We compare three different strategies for generating suitable initial guesses, and we investigate the dependence of the solution on the given trajectory segment (underlying the measured time series). To address the question of how many state variables have to be measured for optimal performance, different types of multivariate time series are considered consisting of 1, 2, or 3 variables. Based on these time series, the local observability of state variables and parameters of the Lorenz-96 model is investigated and confirmed using delay coordinates. This result is in good agreement with the observation that correct state and parameter estimation results are obtained if the optimization algorithm is initialized with initial guesses close to the true solution. In contrast, initialization with other exact solutions of the model equations (different from the true solution used to generate the time series) typically fails, i.e., the optimization procedure ends up in local minima different from the true solution. Initialization using random values in a box around the attractor exhibits success rates depending on the number of observables and the available time series (trajectory segment).


Assuntos
Coleta de Dados/métodos , Modelos Teóricos , Análise Multivariada , Análise de Regressão , Algoritmos , Simulação por Computador
12.
Biol Cybern ; 108(3): 261-73, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24760370

RESUMO

Estimating the behavior of a network of neurons requires accurate models of the individual neurons along with accurate characterizations of the connections among them. Whereas for a single cell, measurements of the intracellular voltage are technically feasible and sufficient to characterize a useful model of its behavior, making sufficient numbers of simultaneous intracellular measurements to characterize even small networks is infeasible. This paper builds on prior work on single neurons to explore whether knowledge of the time of spiking of neurons in a network, once the nodes (neurons) have been characterized biophysically, can provide enough information to usefully constrain the functional architecture of the network: the existence of synaptic links among neurons and their strength. Using standardized voltage and synaptic gating variable waveforms associated with a spike, we demonstrate that the functional architecture of a small network of model neurons can be established.


Assuntos
Simulação por Computador , Modelos Neurológicos , Rede Nervosa/fisiologia , Neurônios/fisiologia , Potenciais de Ação , Animais , Humanos , Análise de Regressão
13.
Biol Cybern ; 108(4): 495-516, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24962080

RESUMO

Recent results demonstrate techniques for fully quantitative, statistical inference of the dynamics of individual neurons under the Hodgkin-Huxley framework of voltage-gated conductances. Using a variational approximation, this approach has been successfully applied to simulated data from model neurons. Here, we use this method to analyze a population of real neurons recorded in a slice preparation of the zebra finch forebrain nucleus HVC. Our results demonstrate that using only 1,500 ms of voltage recorded while injecting a complex current waveform, we can estimate the values of 12 state variables and 72 parameters in a dynamical model, such that the model accurately predicts the responses of the neuron to novel injected currents. A less complex model produced consistently worse predictions, indicating that the additional currents contribute significantly to the dynamics of these neurons. Preliminary results indicate some differences in the channel complement of the models for different classes of HVC neurons, which accords with expectations from the biology. Whereas the model for each cell is incomplete (representing only the somatic compartment, and likely to be missing classes of channels that the real neurons possess), our approach opens the possibility to investigate in modeling the plausibility of additional classes of channels the cell might possess, thus improving the models over time. These results provide an important foundational basis for building biologically realistic network models, such as the one in HVC that contributes to the process of song production and developmental vocal learning in songbirds.


Assuntos
Potenciais de Ação/fisiologia , Fenômenos Biofísicos/fisiologia , Modelos Neurológicos , Condução Nervosa/fisiologia , Neurônios/fisiologia , Animais , Estimulação Elétrica , Canais Iônicos/fisiologia , Modelos Estatísticos , Rede Nervosa/fisiologia , Dinâmica não Linear , Técnicas de Patch-Clamp , Valor Preditivo dos Testes , Reprodutibilidade dos Testes
15.
Neural Comput ; 24(7): 1669-94, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22428591

RESUMO

Neuroscientists often propose detailed computational models to probe the properties of the neural systems they study. With the advent of neuromorphic engineering, there is an increasing number of hardware electronic analogs of biological neural systems being proposed as well. However, for both biological and hardware systems, it is often difficult to estimate the parameters of the model so that they are meaningful to the experimental system under study, especially when these models involve a large number of states and parameters that cannot be simultaneously measured. We have developed a procedure to solve this problem in the context of interacting neural populations using a recently developed dynamic state and parameter estimation (DSPE) technique. This technique uses synchronization as a tool for dynamically coupling experimentally measured data to its corresponding model to determine its parameters and internal state variables. Typically experimental data are obtained from the biological neural system and the model is simulated in software; here we show that this technique is also efficient in validating proposed network models for neuromorphic spike-based very large-scale integration (VLSI) chips and that it is able to systematically extract network parameters such as synaptic weights, time constants, and other variables that are not accessible by direct observation. Our results suggest that this method can become a very useful tool for model-based identification and configuration of neuromorphic multichip VLSI systems.


Assuntos
Simulação por Computador , Modelos Neurológicos , Redes Neurais de Computação , Neurônios/fisiologia , Animais , Humanos
16.
Biol Cybern ; 106(3): 155-67, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22526358

RESUMO

Hodgkin-Huxley (HH) models of neuronal membrane dynamics consist of a set of nonlinear differential equations that describe the time-varying conductance of various ion channels. Using observations of voltage alone we show how to estimate the unknown parameters and unobserved state variables of an HH model in the expected circumstance that the measurements are noisy, the model has errors, and the state of the neuron is not known when observations commence. The joint probability distribution of the observed membrane voltage and the unobserved state variables and parameters of these models is a path integral through the model state space. The solution to this integral allows estimation of the parameters and thus a characterization of many biological properties of interest, including channel complement and density, that give rise to a neuron's electrophysiological behavior. This paper describes a method for directly evaluating the path integral using a Monte Carlo numerical approach. This provides estimates not only of the expected values of model parameters but also of their posterior uncertainty. Using test data simulated from neuronal models comprising several common channels, we show that short (<50 ms) intracellular recordings from neurons stimulated with a complex time-varying current yield accurate and precise estimates of the model parameters as well as accurate predictions of the future behavior of the neuron. We also show that this method is robust to errors in model specification, supporting model development for biological preparations in which the channel expression and other biophysical properties of the neurons are not fully known.


Assuntos
Método de Monte Carlo , Neurônios/fisiologia
17.
Neural Netw ; 153: 530-552, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35839598

RESUMO

A reservoir computer (RC) is a type of recurrent neural network architecture with demonstrated success in the prediction of spatiotemporally chaotic dynamical systems. A further advantage of RC is that it reproduces intrinsic dynamical quantities essential for its incorporation into numerical forecasting routines such as the ensemble Kalman filter-used in numerical weather prediction to compensate for sparse and noisy data. We explore here the architecture and design choices for a "best in class" RC for a number of characteristic dynamical systems. Our analysis points to the importance of large scale parameter optimization. We also note in particular the importance of including input bias in the RC design, which has a significant impact on the forecast skill of the trained RC model. In our tests, the use of a nonlinear readout operator does not affect the forecast time or the stability of the forecast. The effects of the reservoir dimension, spinup time, amount of training data, normalization, noise, and the RC time step are also investigated. Finally, we detail how our investigation leads to optimal design choices for a parallel RC scheme applied to the 40 dimensional spatiotemporally chaotic Lorenz 1996 dynamics.

18.
Biol Cybern ; 105(3-4): 217-37, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21986979

RESUMO

We present a method for using measurements of membrane voltage in individual neurons to estimate the parameters and states of the voltage-gated ion channels underlying the dynamics of the neuron's behavior. Short injections of a complex time-varying current provide sufficient data to determine the reversal potentials, maximal conductances, and kinetic parameters of a diverse range of channels, representing tens of unknown parameters and many gating variables in a model of the neuron's behavior. These estimates are used to predict the response of the model at times beyond the observation window. This method of [Formula: see text] extends to the general problem of determining model parameters and unobserved state variables from a sparse set of observations, and may be applicable to networks of neurons. We describe an exact formulation of the tasks in nonlinear data assimilation when one has noisy data, errors in the models, and incomplete information about the state of the system when observations commence. This is a high dimensional integral along the path of the model state through the observation window. In this article, a stationary path approximation to this integral, using a variational method, is described and tested employing data generated using neuronal models comprising several common channels with Hodgkin-Huxley dynamics. These numerical experiments reveal a number of practical considerations in designing stimulus currents and in determining model consistency. The tools explored here are computationally efficient and have paths to parallelization that should allow large individual neuron and network problems to be addressed.


Assuntos
Algoritmos , Canais Iônicos/fisiologia , Modelos Neurológicos , Modelos Teóricos , Neurônios/fisiologia , Potenciais da Membrana/fisiologia
19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(1 Pt 2): 016201, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19658786

RESUMO

We examine the use of synchronization as a mechanism for extracting parameter and state information from experimental systems. We focus on important aspects of this problem that have received little attention previously and we explore them using experiments and simulations with the chaotic Colpitts oscillator as an example system. We explore the impact of model imperfection on the ability to extract valid information from an experimental system. We compare two optimization methods: an initial value method and a constrained method. Each of these involves coupling the model equations to the experimental data in order to regularize the chaotic motions on the synchronization manifold. We explore both time-dependent and time-independent coupling and discuss the use of periodic impulse coupling. We also examine both optimized and fixed (or manually adjusted) coupling. For the case of an optimized time-dependent coupling function u(t) we find a robust structure which includes sharp peaks and intervals where it is zero. This structure shows a strong correlation with the location in phase space and appears to depend on noise, imperfections of the model, and the Lyapunov direction vectors. For time-independent coupling we find the counterintuitive result that often the optimal rms error in fitting the model to the data initially increases with coupling strength. Comparison of this result with that obtained using simulated data may provide one measure of model imperfection. The constrained method with time-dependent coupling appears to have benefits in synchronizing long data sets with minimal impact, while the initial value method with time-independent coupling tends to be substantially faster, more flexible, and easier to use. We also describe a method of coupling which is useful for sparse experimental data sets. Our use of the Colpitts oscillator allows us to explore in detail the case of a system with one positive Lyapunov exponent. The methods we explored are easily extended to driven systems such as neurons with time-dependent injected current. They are expected to be of value in nonchaotic systems as well. Software is available on request.

20.
Curr Opin Neurobiol ; 16(2): 135-44, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16564165

RESUMO

By using multi-electrode arrays or optical imaging, investigators can now record from many individual neurons in various parts of nervous systems simultaneously while an animal performs sensory, motor or cognitive tasks. Given the large multidimensional datasets that are now routinely generated, it is often not obvious how to find meaningful results within the data. The analysis of neuronal-population recordings typically involves two steps: the extraction of relevant dynamics from neural data, and then use of the dynamics to classify and discriminate features of a stimulus or behavior. We focus on the application of techniques that emphasize interactions among the recorded neurons rather than using just the correlations between individual neurons and a perception or a behavior. An understanding of modern analysis techniques is crucially important for researchers interested in the co-varying activity among populations of neurons or even brain regions.


Assuntos
Potenciais de Ação/fisiologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Neurofisiologia/métodos , Transmissão Sináptica/fisiologia , Animais , Cognição/fisiologia , Humanos , Movimento/fisiologia , Neurofisiologia/tendências , Dinâmica não Linear , Processamento de Sinais Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA