Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 497(7450): 470-4, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23698446

RESUMO

Decades ago, Veselago predicted that a material with simultaneously negative electric and magnetic polarization responses would yield a 'left-handed' medium in which light propagates with opposite phase and energy velocities--a condition described by a negative refractive index. He proposed that a flat slab of left-handed material possessing an isotropic refractive index of -1 could act like an imaging lens in free space. Left-handed materials do not occur naturally, and it has only recently become possible to achieve a left-handed response using metamaterials, that is, electromagnetic structures engineered on subwavelength scales to elicit tailored polarization responses. So far, left-handed responses have typically been implemented using resonant metamaterials composed of periodic arrays of unit cells containing inductive-capacitive resonators and conductive wires. Negative refractive indices that are isotropic in two or three dimensions at microwave frequencies have been achieved in resonant metamaterials with centimetre-scale features. Scaling the left-handed response to higher frequencies, such as infrared or visible, has been done by shrinking critical dimensions to submicrometre scales by means of top-down nanofabrication. This miniaturization has, however, so far been achieved at the cost of reduced unit-cell symmetry, yielding a refractive index that is negative along only one axis. Moreover, lithographic scaling limits have so far precluded the fabrication of resonant metamaterials with left-handed responses at frequencies beyond the visible. Here we report the experimental implementation of a bulk metamaterial with a left-handed response to ultraviolet light. The structure, based on stacked plasmonic waveguides, yields an omnidirectional left-handed response for transverse magnetic polarization characterized by a negative refractive index. By engineering the structure to have a refractive index close to -1 over a broad angular range, we achieve Veselago flat lensing, in free space, of arbitrarily shaped, two-dimensional objects beyond the near field. We further demonstrate active, all-optical modulation of the image transferred by the flat lens.

2.
Opt Express ; 24(26): 30173-30187, 2016 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-28059294

RESUMO

Non-degenerate 2-photon excitation (ND-2PE) of a fluorophore with two laser beams of different photon energies offers an independent degree of freedom in tuning of the photon flux for each beam. This feature takes advantage of the infrared wavelengths used in degenerate 3-photon excitation (D-3PE) microscopy to achieve increased penetration depths, while preserving a relatively high 2-photon excitation cross section in comparison to that of D-3PE. Here, using spatially and temporally aligned Ti:Sapphire laser and optical parametric oscillator beams operating at near infrared (NIR) and short-wavelength infrared (SWIR) optical frequencies, we employ ND-2PE and provide a practical demonstration that a constant fluorophore emission intensity is achievable deeper into a scattering medium using ND-2PE as compared to the commonly used degenerate 2-photon excitation (D-2PE).

3.
Opt Lett ; 40(11): 2453-6, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26030530

RESUMO

We designed, fabricated, and characterized a dielectric metamaterial lens created by varying the density of subwavelength low refractive index nanoholes in a high refractive index substrate, resulting in a locally variable effective refraction index. It is shown that a constructed graded index lens can overcome diffraction effects even when the aperture/wavelength (D/λ) ratio is smaller than 40. In addition to the conventional design of a polarization insensitive lens, we also show that a polarization diversity lens (f(o)≠f(e)) can be realized by arranging nanoholes in patterns with variable density in different transverse directions. Such a anisotropic microlens demonstrates polarization dependent focal lengths of 32 and 22 µm for linearly x- and y-polarized light, respectively, operating at a wavelength of λ=1550 nm. We also show numerically and demonstrate experimentally achromatic performance of the devices operating in the wavelength range of 1500-1900 nm with full width at half-maximum (FWHM) of the focal spots of about 4 µm.

4.
Opt Express ; 22(19): 22786-93, 2014 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-25321747

RESUMO

We introduce a metacoaxial nanoantenna (MN) that super-localizes the incident electromagnetic field to "hotspots" with a top-down area of 2 nm(2), a local field enhancement of ~200-400, and a field localization with a very large spectral range from the visible to the infrared range that has a spectral bandwidth ≥ 900 nm. Not only is this nanoantenna extremely broadband with ultra-high localization, it also shows significant improvements over traditional nanoantenna designs, as the hotspots are re-configurable by breaking the circular symmetry which enables the ability to tailor the polarization response. These attributes offer significant improvements over traditional nanoantennas as building blocks for metasurfaces and enhanced biodetection that we demonstrate in this work.


Assuntos
Nanopartículas Metálicas/química , Nanotecnologia/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Desenho de Equipamento
5.
Opt Lett ; 39(6): 1693-6, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24690871

RESUMO

We theoretically consider the existence of multiple nonzero components of the second-order nonlinear susceptibility tensor, χ(2), generated via strain-induced symmetry breaking in crystalline silicon. We determine that, in addition to the previously reported χ(xxy)(2) component, the χ(yyy)(2) component also becomes nonzero based on the remaining symmetry present in the strained material. In order to characterize these two nonlinearities, we fabricate Fabry-Perot waveguide resonators on 250 nm thick silicon-on-insulator wafers clad with 180 nm of compressively stressed (-1.275 GPa) silicon nitride. We measure the shifts in these devices' modal effective indices in response to several bias electric fields and calculate the χ(eff,xxy)(2) and χ(eff,yyy)(2) nonlinear susceptibility tensor elements induced by the breaking of the guiding material's inversion symmetry. Through the incorporation of finite element simulations encompassing the theoretical distribution of strain, the applied bias field, and the optical modes supported by the waveguide geometry, we extract two phenomenological scaling coefficients which relate the induced optical nonlinearities to the local strain gradient.

6.
Opt Lett ; 36(10): 1869-71, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21593918

RESUMO

Heterodyne near-field scanning optical microscopy (H-NSOM) has proven useful as a tool for characterization of both amplitude and phase of on-chip photonic devices in air, but it has previously been unable to characterize devices with a dielectric overcladding, which is commonly used in practice for such devices. Here we demonstrate H-NSOM of a silicon waveguide with a liquid cladding emulating the solid dielectric. This technique allows characterization of practical devices with realistic refractive index profiles. Fourier analysis is used to estimate the effective refractive index of the mode from the measured data, showing an index shift of 0.08 from air to water cladding, which is seen to correspond well to simulations.

7.
Opt Express ; 17(6): 4824-32, 2009 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-19293913

RESUMO

We experimentally demonstrate use of plasmonic resonant phenomena combined with strong field localization to enhance efficiency of confining optical fields in a Si waveguide. Our approach utilizes a plasmonic resonant nano-focusing-antenna (RNFA), that simultaneously supports several focusing mechanisms in a single nanostructure, integrated with a lossless Si waveguide utilized with silicon-on-insulator (SOI) technology, to achieve a sub-diffraction limited focusing with a nanoscale (deeply subwavelength) spot size. The metallic RNFA effectively converts an incoming propagating waveguide mode to a localized resonant plasmon mode in an ultrasmall volume in all 3 dimensions. The near-field optical measurements of the fabricated RNFA using heterodyne near-field scanning optical microscope (H-NSOM) validate the theoretical predictions showing strong optical field localization.

8.
Opt Express ; 15(13): 8065-75, 2007 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-19547134

RESUMO

An integrated total internal reflection prism is demonstrated that generates a transversely localized evanescent wave along the boundary between a photonic crystal and an etched out trench. The reflection can be described by either the odd symmetry of the Bloch wave or a tangential momentum matching condition. In addition, the Bloch wave propagates through the photonic crystal in a negative refraction regime, which manages diffraction within the prism. A device with three input channels has been fabricated and tested that illuminates different regions of the reflection interface. The reflected wave is then sampled by a photonic wire array, where the individual channels are resolved. Heterodyne near field scanning optical microscopy is used to characterize the spatial phase variation of the evanescent wave and its decay constant.

9.
Opt Express ; 14(4): 1643-57, 2006 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-19503492

RESUMO

We analyze the propagating optical modes in a Silicon membrane photonic crystal waveguide, based on subwavelength-resolution amplitude and phase measurements of the optical fields using a heterodyne near-field scanning optical microscope (H-NSOM). Fourier analysis of the experimentally obtained optical amplitude and phase data permits identification of the propagating waveguide modes, including the direction of propagation (in contrast to intensity-only measurement techniques). This analysis reveals the presence of two superposed propagating modes in the waveguide. The characteristics of each mode are determined and found to be consistent with theoretical predictions within the limits of fabrication tolerances. An analysis of the relative amplitudes of these two modes as a function of wavelength show periodic oscillation with a period of approximately 3.3 nm. The coupling efficiency between the ridge waveguide and the photonic crystal waveguide is also estimated and found to be consistent with the internal propagating mode characteristics. The combination of high-sensitivity amplitude and phase measurements, subwavelength spatial resolution, and appropriate interpretive techniques permits the in-situ observation of the optical properties of the device with an unprecedented level of detail, and facilitates the characterization and optimization of nanostructure-based photonic devices and systems.

10.
Elife ; 52016 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-27244241

RESUMO

Identification of the cellular players and molecular messengers that communicate neuronal activity to the vasculature driving cerebral hemodynamics is important for (1) the basic understanding of cerebrovascular regulation and (2) interpretation of functional Magnetic Resonance Imaging (fMRI) signals. Using a combination of optogenetic stimulation and 2-photon imaging in mice, we demonstrate that selective activation of cortical excitation and inhibition elicits distinct vascular responses and identify the vasoconstrictive mechanism as Neuropeptide Y (NPY) acting on Y1 receptors. The latter implies that task-related negative Blood Oxygenation Level Dependent (BOLD) fMRI signals in the cerebral cortex under normal physiological conditions may be mainly driven by the NPY-positive inhibitory neurons. Further, the NPY-Y1 pathway may offer a potential therapeutic target in cerebrovascular disease.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Neuropeptídeo Y/farmacologia , Acoplamento Neurovascular/efeitos dos fármacos , Receptores de Neuropeptídeo Y/metabolismo , Vasoconstritores/farmacologia , Animais , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiopatologia , Transtornos Cerebrovasculares/tratamento farmacológico , Transtornos Cerebrovasculares/genética , Transtornos Cerebrovasculares/metabolismo , Transtornos Cerebrovasculares/fisiopatologia , Diagnóstico por Imagem , Expressão Gênica , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Optogenética , Especificidade de Órgãos , Oxigênio/metabolismo , Estimulação Luminosa , Ligação Proteica , Receptores de Neuropeptídeo Y/genética , Vasoconstrição/efeitos dos fármacos
11.
ACS Nano ; 8(11): 11883-90, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25317926

RESUMO

The local collection characteristics of grain interiors and grain boundaries in thin-film CdTe polycrystalline solar cells are investigated using scanning photocurrent microscopy. The carriers are locally generated by light injected through a small aperture (50-300 nm) of a near-field scanning optical microscope in an illumination mode. Possible influence of rough surface topography on light coupling is examined and eliminated by sculpting smooth wedges on the granular CdTe surface. By varying the wavelength of light, nanoscale spatial variations in external quantum efficiency are mapped. We find that the grain boundaries (GBs) are better current collectors than the grain interiors (GIs). The increased collection efficiency is caused by two distinct effects associated with the material composition of GBs. First, GBs are charged, and the corresponding built-in field facilitates the separation and the extraction of the photogenerated carriers. Second, the GB regions generate more photocurrent at long wavelength corresponding to the band edge, which can be caused by a smaller local band gap. Resolving carrier collection with nanoscale resolution in solar cell materials is crucial for optimizing the polycrystalline device performance through appropriate thermal processing and passivation of defects and surfaces.

12.
Opt Lett ; 34(9): 1327-9, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19412261

RESUMO

We propose to use low-coherence-length cw optical sources with a broad spectrum in heterodyne near-field scanning microscopy in order to imitate optical pulse propagation and to obtain information about spectrally variant properties of nanophotonic components. The dispersion difference in the interferometer arms for a symmetric acousto-optic modulator arrangement is shown to be negligible over appreciable bandwidths. Demonstration of the principle of operation and viability of this approach is provided by measurement of the group refractive index of a silicon channel waveguide.

13.
Opt Lett ; 32(17): 2602-4, 2007 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-17767319

RESUMO

We study the effects of metal-coated fiber near-field probes on the performance of nanophotonic devices. Employing a heterodyne near-field scanning optical microscope and analyzing transmission characteristics, we find that a metal-coated probe can typically introduce a 3 dB intensity loss and a 0.2 rad phase shift during characterization of a straight waveguide made in a silicon-on-insulator system. In resonant nanophotonic structures such as a 5 mum radius microring resonator, we demonstrate that the probe induces a 1 nm shift in resonant wavelength and decreases the resonator quality factor, Q, from 1100 to 480.

14.
Phys Rev Lett ; 98(24): 243901, 2007 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-17677965

RESUMO

We experimentally demonstrate for the first time the focusing of optical beams within an inhomogeneous dielectric metamaterial with space-variant polarizability, implemented by etching subwavelength structures into a Silicon slab. Light focusing is obtained by creating an artificial slab material with graded refractive index profile. The local refractive index within the slab is modulated by controlling the duty cycle of the subwavelength structures. The demonstrated metamaterial based component can be integrated with various other building blocks towards the realization of devices and systems in free space optics on a chip configuration.


Assuntos
Nanotecnologia/métodos , Óptica e Fotônica/instrumentação , Fótons , Dispositivos Lab-On-A-Chip , Procedimentos Analíticos em Microchip/métodos , Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA