Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(2): 334-351.e20, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33434495

RESUMO

Despite considerable efforts, the mechanisms linking genomic alterations to the transcriptional identity of cancer cells remain elusive. Integrative genomic analysis, using a network-based approach, identified 407 master regulator (MR) proteins responsible for canalizing the genetics of individual samples from 20 cohorts in The Cancer Genome Atlas (TCGA) into 112 transcriptionally distinct tumor subtypes. MR proteins could be further organized into 24 pan-cancer, master regulator block modules (MRBs), each regulating key cancer hallmarks and predictive of patient outcome in multiple cohorts. Of all somatic alterations detected in each individual sample, >50% were predicted to induce aberrant MR activity, yielding insight into mechanisms linking tumor genetics and transcriptional identity and establishing non-oncogene dependencies. Genetic and pharmacological validation assays confirmed the predicted effect of upstream mutations and MR activity on downstream cellular identity and phenotype. Thus, co-analysis of mutational and gene expression profiles identified elusive subtypes and provided testable hypothesis for mechanisms mediating the effect of genetic alterations.


Assuntos
Neoplasias/genética , Transcrição Gênica , Adenocarcinoma/genética , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Genoma Humano , Células HEK293 , Humanos , Camundongos Nus , Mutação/genética , Reprodutibilidade dos Testes
2.
Cell ; 173(2): 515-528.e17, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29625057

RESUMO

Bladder cancer is the fifth most prevalent cancer in the U.S., yet is understudied, and few laboratory models exist that reflect the biology of the human disease. Here, we describe a biobank of patient-derived organoid lines that recapitulates the histopathological and molecular diversity of human bladder cancer. Organoid lines can be established efficiently from patient biopsies acquired before and after disease recurrence and are interconvertible with orthotopic xenografts. Notably, organoid lines often retain parental tumor heterogeneity and exhibit a spectrum of genomic changes that are consistent with tumor evolution in culture. Analyses of drug response using bladder tumor organoids show partial correlations with mutational profiles, as well as changes associated with treatment resistance, and specific responses can be validated using xenografts in vivo. Our studies indicate that patient-derived bladder tumor organoids represent a faithful model system for studying tumor evolution and treatment response in the context of precision cancer medicine.


Assuntos
Neoplasias da Bexiga Urinária/patologia , Idoso , Idoso de 80 Anos ou mais , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Variações do Número de Cópias de DNA , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Pessoa de Meia-Idade , Mutação , Organoides/citologia , Organoides/efeitos dos fármacos , Organoides/metabolismo , Medicina de Precisão , Transplante Heterólogo , Células Tumorais Cultivadas , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/metabolismo
3.
Genes Dev ; 30(4): 399-407, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26883359

RESUMO

Understanding new therapeutic paradigms for both castrate-sensitive and more aggressive castrate-resistant prostate cancer is essential to improve clinical outcomes. As a critically important cellular process, autophagy promotes stress tolerance by recycling intracellular components to sustain metabolism important for tumor survival. To assess the importance of autophagy in prostate cancer, we generated a new autochthonous genetically engineered mouse model (GEMM) with inducible prostate-specific deficiency in the Pten tumor suppressor and autophagy-related-7 (Atg7) genes. Atg7 deficiency produced an autophagy-deficient phenotype and delayed Pten-deficient prostate tumor progression in both castrate-naïve and castrate-resistant cancers. Atg7-deficient tumors display evidence of endoplasmic reticulum (ER) stress, suggesting that autophagy may promote prostate tumorigenesis through management of protein homeostasis. Taken together, these data support the importance of autophagy for both castrate-naïve and castrate-resistant growth in a newly developed GEMM, suggesting a new paradigm and model to study approaches to inhibit autophagy in combination with known and new therapies for advanced prostate cancer.


Assuntos
Carcinogênese/genética , Carcinogênese/patologia , Proteínas Associadas aos Microtúbulos/metabolismo , Neoplasias da Próstata/fisiopatologia , Animais , Animais Geneticamente Modificados , Autofagia/genética , Proteína 7 Relacionada à Autofagia , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/genética , Deleção de Genes , Masculino , Camundongos , Proteínas Associadas aos Microtúbulos/deficiência , Proteínas Associadas aos Microtúbulos/genética , PTEN Fosfo-Hidrolase/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/fisiopatologia , Transdução de Sinais/genética
4.
J Urol ; 204(2): 247-253, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32118506

RESUMO

PURPOSE: For patients with bacillus Calmette-Guérin unresponsive or recurrent/relapsing nonmuscle invasive bladder cancer, multi-agent intravesical trials have been limited. In this study we investigate the safety of intravesical cabazitaxel, gemcitabine and cisplatin in the salvage setting. MATERIALS AND METHODS: This was a dose escalation, drug escalation trial for patients with bacillus Calmette-Guérin unresponsive or recurrent/relapsing nonmuscle invasive bladder cancer who declined or were ineligible for radical cystectomy. All patients underwent a 6-week induction regimen of sequentially administered cabazitaxel, gemcitabine and cisplatin. Complete response was defined as no cancer on post-induction transurethral bladder tumor resection and negative urine cytology, while partial response allowed for positive cytology. Responders continued with maintenance cabazitaxel and gemcitabine monthly for the first year and bimonthly for the second year. RESULTS: A total of 18 patients were enrolled. Mean age was 71 years, median followup was 27.8 months (range 16.3 to 46.9) and mean number of previous rounds of intravesical therapies before trial enrollment was 3.7. Nine patients (50%) had received intravesical chemotherapy after bacillus Calmette-Guérin and 7 (39%) were previously treated in a phase I clinical trial setting. At enrollment 6 (33%) subjects had T1 disease and 13 (72%) had carcinoma in situ. There were no dose limiting toxicities. Initial partial and complete response rates were 94% and 89%, respectively. At 1 year recurrence-free survival was 0.83 (range 0.57 to 0.94) and at 2 years estimated recurrence-free survival was 0.64 (0.32 to 0.84). CONCLUSIONS: In this high risk and highly pretreated cohort of bacillus Calmette-Guérin unresponsive or recurrent/relapsing nonmuscle invasive bladder cancer cases combination intravesical cabazitaxel, gemcitabine and cisplatin was a well tolerated and potentially effective regimen.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma de Células de Transição/tratamento farmacológico , Cisplatino/administração & dosagem , Desoxicitidina/análogos & derivados , Taxoides/administração & dosagem , Neoplasias da Bexiga Urinária/tratamento farmacológico , Administração Intravesical , Adulto , Idoso , Idoso de 80 Anos ou mais , Vacina BCG/administração & dosagem , Carcinoma de Células de Transição/patologia , Desoxicitidina/administração & dosagem , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/patologia , Neoplasias da Bexiga Urinária/patologia , Gencitabina
5.
Genes Dev ; 24(18): 1967-2000, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20844012

RESUMO

Despite much recent progress, prostate cancer continues to represent a major cause of cancer-related mortality and morbidity in men. Since early studies on the role of the androgen receptor that led to the advent of androgen deprivation therapy in the 1940s, there has long been intensive interest in the basic mechanisms underlying prostate cancer initiation and progression, as well as the potential to target these processes for therapeutic intervention. Here, we present an overview of major themes in prostate cancer research, focusing on current knowledge of principal events in cancer initiation and progression. We discuss recent advances, including new insights into the mechanisms of castration resistance, identification of stem cells and tumor-initiating cells, and development of mouse models for preclinical evaluation of novel therapuetics. Overall, we highlight the tremendous research progress made in recent years, and underscore the challenges that lie ahead.


Assuntos
Neoplasias da Próstata/genética , Animais , Castração , Progressão da Doença , Humanos , Masculino , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/terapia
6.
Genes Dev ; 23(6): 675-80, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19261747

RESUMO

Although bladder cancer represents a serious health problem worldwide, relevant mouse models for investigating disease progression or therapeutic targets have been lacking. We show that combined deletion of p53 and Pten in bladder epithelium leads to invasive cancer in a novel mouse model. Inactivation of p53 and PTEN promotes tumorigenesis in human bladder cells and is correlated with poor survival in human tumors. Furthermore, the synergistic effects of p53 and Pten deletion are mediated by deregulation of mammalian target of rapamycin (mTOR) signaling, consistent with the ability of rapamycin to block bladder tumorigenesis in preclinical studies. Our integrated analyses of mouse and human bladder cancer provide a rationale for investigating mTOR inhibition for treatment of patients with invasive disease.


Assuntos
Carcinoma de Células de Transição/patologia , Transformação Celular Neoplásica , Modelos Animais de Doenças , PTEN Fosfo-Hidrolase/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Neoplasias da Bexiga Urinária/patologia , Animais , Carcinoma de Células de Transição/genética , Carcinoma de Células de Transição/metabolismo , Humanos , Metástase Linfática , Masculino , Camundongos , Camundongos Nus , Camundongos Transgênicos , Invasividade Neoplásica , PTEN Fosfo-Hidrolase/genética , Proteínas Quinases/fisiologia , Ratos , Transdução de Sinais , Serina-Treonina Quinases TOR , Proteína Supressora de Tumor p53/genética , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo
7.
N Engl J Med ; 378(17): 1643-1645, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29694822
8.
Proc Natl Acad Sci U S A ; 110(37): E3506-15, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-23918374

RESUMO

Combinatorial activation of PI3-kinase and RAS signaling occurs frequently in advanced prostate cancer and is associated with adverse patient outcome. We now report that the oncogenic Ets variant 4 (Etv4) promotes prostate cancer metastasis in response to coactivation of PI3-kinase and Ras signaling pathways in a genetically engineered mouse model of highly penetrant, metastatic prostate cancer. Using an inducible Cre driver to simultaneously inactivate Pten while activating oncogenic Kras and a fluorescent reporter allele in the prostate epithelium, we performed lineage tracing in vivo to define the temporal and spatial occurrence of prostate tumors, disseminated tumor cells, and metastases. These analyses revealed that though disseminated tumors cells arise early following the initial occurrence of prostate tumors, there is a significant temporal lag in metastasis, which is temporally coincident with the up-regulation of Etv4 expression in primary tumors. Functional studies showed that knockdown of Etv4 in a metastatic cell line derived from the mouse model abrogates the metastatic phenotype but does not affect tumor growth. Notably, expression and activation of ETV4, but not other oncogenic ETS genes, is correlated with activation of both PI3-kinase and Ras signaling in human prostate tumors and metastases. Our findings indicate that ETV4 promotes metastasis in prostate tumors that have activation of PI3-kinase and Ras signaling, and therefore, ETV4 represents a potential target of therapeutic intervention for metastatic prostate cancer.


Assuntos
Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/secundário , Proteínas Proto-Oncogênicas c-ets/metabolismo , Proteínas ras/metabolismo , Proteínas E1A de Adenovirus/genética , Proteínas E1A de Adenovirus/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Genes ras , Engenharia Genética , Proteínas de Homeodomínio/genética , Humanos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oncogenes , PTEN Fosfo-Hidrolase/genética , Neoplasias da Próstata/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-ets/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-ets/genética , Transdução de Sinais , Fatores de Transcrição/genética , Regulação para Cima
9.
Cancer Cell ; 12(6): 495-7, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18068626

RESUMO

Members of the fibroblast growth factor (FGF) family are believed to play critical roles during organogenesis and carcinogenesis via signaling between epithelial and stromal compartments. Two new studies in this issue of Cancer Cell underscore the importance of FGF signaling in mediating epithelial-stromal interactions during prostate carcinogenesis. These papers show that deregulated FGF signaling in mouse models of prostate cancer leads to cancer progression and promotes an epithelial-mesenchymal transition, suggesting that FGF receptor inhibitors may have therapeutic value for prostate cancer treatment.


Assuntos
Comunicação Celular , Células Epiteliais/patologia , Fatores de Crescimento de Fibroblastos/metabolismo , Neoplasias da Próstata/patologia , Transdução de Sinais , Células Estromais/patologia , Animais , Fator 10 de Crescimento de Fibroblastos/metabolismo , Humanos , Masculino , Camundongos , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo
10.
Nature ; 461(7263): 495-500, 2009 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-19741607

RESUMO

In epithelial tissues, the lineage relationship between normal progenitor cells and cell type(s) of origin for cancer has been poorly understood. Here we show that a known regulator of prostate epithelial differentiation, the homeobox gene Nkx3-1, marks a stem cell population that functions during prostate regeneration. Genetic lineage-marking demonstrates that rare luminal cells that express Nkx3-1 in the absence of testicular androgens (castration-resistant Nkx3-1-expressing cells, CARNs) are bipotential and can self-renew in vivo, and single-cell transplantation assays show that CARNs can reconstitute prostate ducts in renal grafts. Functional assays of Nkx3-1 mutant mice in serial prostate regeneration suggest that Nkx3-1 is required for stem cell maintenance. Furthermore, targeted deletion of the Pten tumour suppressor gene in CARNs results in rapid carcinoma formation after androgen-mediated regeneration. These observations indicate that CARNs represent a new luminal stem cell population that is an efficient target for oncogenic transformation in prostate cancer.


Assuntos
Linhagem da Célula , Células Epiteliais/patologia , Células-Tronco Neoplásicas/patologia , Neoplasias da Próstata/patologia , Androgênios/deficiência , Androgênios/metabolismo , Animais , Castração , Diferenciação Celular , Divisão Celular , Transformação Celular Neoplásica , Células Epiteliais/metabolismo , Células Epiteliais/transplante , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Rim , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/transplante , PTEN Fosfo-Hidrolase/deficiência , PTEN Fosfo-Hidrolase/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Regeneração , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Cancer Metastasis Rev ; 32(1-2): 109-22, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23114843

RESUMO

More than 15 years ago, the first generation of genetically engineered mouse (GEM) models of prostate cancer was introduced. These transgenic models utilized prostate-specific promoters to express SV40 oncogenes specifically in prostate epithelium. Since the description of these initial models, there have been a plethora of GEM models of prostate cancer representing various perturbations of oncogenes or tumor suppressors, either alone or in combination. This review describes these GEM models, focusing on their relevance for human prostate cancer and highlighting their strengths and limitations, as well as opportunities for the future.


Assuntos
Modelos Animais de Doenças , Camundongos/genética , Neoplasias da Próstata/etiologia , Neoplasias da Próstata/patologia , Animais , Genes Supressores de Tumor , Humanos , Masculino , Camundongos Transgênicos , Metástase Neoplásica , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Lesões Pré-Cancerosas , Proto-Oncogenes , Transdução de Sinais
12.
Dev Dyn ; 242(10): 1160-71, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23813564

RESUMO

BACKGROUND: The formation of the prostate gland requires reciprocal interactions between the epithelial and mesenchymal components of the embryonic urogenital sinus. However, the identity of the signaling factors that mediate these interactions is largely unknown. RESULTS: Our studies show that expression of the prostate-specific transcription factor Nkx3.1 is regulated by the canonical Wnt signaling pathway. Using mice carrying a targeted lacZ knock-in allele of Nkx3.1, we find that Nkx3.1 is expressed in all epithelial cells of ductal buds during prostate organogenesis. Addition of Wnt inhibitors to urogenital sinus explant culture greatly reduces prostate budding and inhibits Nkx3.1 expression as well as differentiation of luminal epithelial cells. Analyses of a TCF/Lef:H2B-GFP transgene reporter show that canonical Wnt signaling activity is found in urogenital mesenchyme but not urogenital sinus epithelium before prostate formation, and is later observed in the mesenchyme and epithelium of prostate ductal tips. Furthermore, TCF/Lef:H2B-GFP reporter activity is reduced in epithelial cells of Nkx3.1 null neonatal prostates, suggesting that Nkx3.1 functions to maintain canonical Wnt signaling activity in developing prostate bud tips. CONCLUSIONS: We propose that activated canonical Wnt signals and Nkx3.1 function in a positive feedback loop to regulate prostate bud growth and luminal epithelial differentiation.


Assuntos
Células Epiteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Homeodomínio/biossíntese , Organogênese/fisiologia , Próstata/embriologia , Fatores de Transcrição/biossíntese , Via de Sinalização Wnt/fisiologia , Animais , Células Epiteliais/citologia , Proteínas de Homeodomínio/genética , Masculino , Camundongos , Camundongos Transgênicos , Próstata/citologia , Fatores de Transcrição/genética , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-38772706

RESUMO

In the nearly 50 years since the original models of cancer first hit the stage, mouse models have become a major contributor to virtually all aspects of cancer research, and these have evolved well beyond simple transgenic or xenograft models to encompass a wide range of more complex models. As the sophistication of mouse models has increased, an explosion of new technologies has expanded the potential to both further develop and apply these models to address major challenges in cancer research. In the current era, cancer modeling has expanded to include nongermline genetically engineered mouse models (GEMMs), patient-derived models, organoids, and adaptations of the models better suited for cancer immunology research. New technologies that have transformed the field include the application of CRISPR-Cas9-mediated genome editing, in vivo imaging, and single-cell analysis to cancer modeling. Here, we provide a historical perspective on the evolution of mouse models of cancer, focusing on how far we have come in a relatively short time and how new technologies will shape the future development of mouse models of cancer.

14.
Oncogene ; 43(17): 1303-1315, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38454137

RESUMO

Most cancer deaths are due to metastatic dissemination to distant organs. Bone is the most frequently affected organ in metastatic prostate cancer and a major cause of prostate cancer deaths. Yet, our partial understanding of the molecular factors that drive bone metastasis has been a limiting factor for developing preventative and therapeutic strategies to improve patient survival and well-being. Although recent studies have uncovered molecular alterations that occur in prostate cancer metastasis, their functional relevance for bone metastasis is not well understood. Using genome-wide CRISPR activation and inhibition screens we have identified multiple drivers and suppressors of prostate cancer metastasis. Through functional validation, including an innovative organ-on-a-chip invasion platform for studying bone tropism, our study identifies the transcriptional modulator CITED2 as a novel driver of prostate cancer bone metastasis and uncovers multiple new potential molecular targets for bone metastatic disease.

15.
Eur Urol ; 85(4): 361-372, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37659962

RESUMO

BACKGROUND: The antidiabetic drug metformin has known anticancer effects related to its antioxidant activity; however, its clinical benefit for prostate cancer (PCa) has thus far been inconclusive. Here, we investigate whether the efficacy of metformin in PCa is related to the expression status of NKX3.1, a prostate-specific homeobox gene that functions in mitochondria to protect the prostate from aberrant oxidative stress. OBJECTIVE: To investigate the relationship of NKX3.1 expression and metformin efficacy in PCa. DESIGN, SETTING, AND PARTICIPANTS: Functional studies were performed in vivo and in vitro in genetically engineered mouse models and human LNCaP cells, and organotypic cultures having normal or reduced/absent levels of NKX3.1. Correlative studies were performed using two independent retrospective tissue microarray cohorts of radical prostatectomies and a retrospective cohort of prostate biopsies from patients on active surveillance. INTERVENTION: Metformin was administered before or after the induction of oxidative stress by treatment with paraquat. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Functional endpoints included analyses of histopathology, tumorigenicity, and mitochondrial function. Correlative endpoints include Kaplan-Meier curves and Cox proportional hazard regression models. RESULTS AND LIMITATIONS: Metformin reversed the adverse consequences of NKX3.1 deficiency following oxidative stress in vivo and in vitro, as evident by reduced tumorigenicity and restored mitochondrial function. Patients with low NKX3.1 expression showed a significant clinical benefit from taking metformin. CONCLUSIONS: Metformin can overcome the adverse consequences of NKX3.1 loss for PCa progression by protecting against oxidative stress and promoting normal mitochondrial function. These functional activities and clinical correlates were observed only with low NKX3.1 expression. Thus, the clinical benefit of metformin in PCa may depend on the status of NKX3.1 expression. PATIENT SUMMARY: Prostate cancer patients with low NKX3.1 are likely to benefit most from metformin treatment to delay disease progression in a precision interception paradigm.


Assuntos
Metformina , Neoplasias da Próstata , Masculino , Camundongos , Animais , Humanos , Próstata/patologia , Estudos Retrospectivos , Metformina/farmacologia , Metformina/uso terapêutico , Metformina/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/genética , Neoplasias da Próstata/genética
16.
Nat Commun ; 15(1): 363, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191471

RESUMO

In the complex tumor microenvironment (TME), mesenchymal cells are key players, yet their specific roles in prostate cancer (PCa) progression remain to be fully deciphered. This study employs single-cell RNA sequencing to delineate molecular changes in tumor stroma that influence PCa progression and metastasis. Analyzing mesenchymal cells from four genetically engineered mouse models (GEMMs) and correlating these findings with human tumors, we identify eight stromal cell populations with distinct transcriptional identities consistent across both species. Notably, stromal signatures in advanced mouse disease reflect those in human bone metastases, highlighting periostin's role in invasion and differentiation. From these insights, we derive a gene signature that predicts metastatic progression in localized disease beyond traditional Gleason scores. Our results illuminate the critical influence of stromal dynamics on PCa progression, suggesting new prognostic tools and therapeutic targets.


Assuntos
Células-Tronco Mesenquimais , Neoplasias da Próstata , Humanos , Masculino , Animais , Camundongos , Neoplasias da Próstata/genética , Próstata , Células Estromais , Diferenciação Celular , Microambiente Tumoral/genética
17.
Nat Rev Cancer ; 2(10): 777-85, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12360280

RESUMO

Homeobox genes comprise a large and essential family of developmental regulators that are vital for all aspects of growth and differentiation. Although many studies have reported their deregulated expression in cancer, few studies have established direct functional roles for homeobox genes in carcinogenesis. Nonetheless, most cases of deregulated homeobox gene expression in cancer conform to a simple rule: those that are normally expressed in undifferentiated cells are upregulated in cancer, whereas those that are normally expressed in differentiated tissues are downregulated in cancer.


Assuntos
Regulação Neoplásica da Expressão Gênica , Genes Homeobox/genética , Neoplasias/metabolismo , Animais , Drosophila , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Modelos Biológicos , Modelos Moleculares , Estrutura Terciária de Proteína , Transporte Proteico
18.
Dev Cell ; 58(24): 2822-2825, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38113848

RESUMO

Researchers are leveraging what we have learned from model organisms to understand if the same principles arise in human physiology, development, and disease. In this collection of Voices, we asked researchers from different fields to discuss what tools and insights they are using to answer fundamental questions in human biology.

19.
bioRxiv ; 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37502956

RESUMO

The clinical use of potent androgen receptor (AR) inhibitors has promoted the emergence of novel subtypes of metastatic castration-resistant prostate cancer (mCRPC), including neuroendocrine prostate cancer (CRPC-NE), which is highly aggressive and lethal 1 . These mCRPC subtypes display increased lineage plasticity and often lack AR expression 2-5 . Here we show that neuroendocrine differentiation and castration-resistance in CRPC-NE are maintained by the activity of Nuclear Receptor Binding SET Domain Protein 2 (NSD2) 6 , which catalyzes histone H3 lysine 36 dimethylation (H3K36me2). We find that organoid lines established from genetically-engineered mice 7 recapitulate key features of human CRPC-NE, and can display transdifferentiation to neuroendocrine states in culture. CRPC-NE organoids express elevated levels of NSD2 and H3K36me2 marks, but relatively low levels of H3K27me3, consistent with antagonism of EZH2 activity by H3K36me2. Human CRPC-NE but not primary NEPC tumors expresses high levels of NSD2, consistent with a key role for NSD2 in lineage plasticity, and high NSD2 expression in mCRPC correlates with poor survival outcomes. Notably, CRISPR/Cas9 targeting of NSD2 or expression of a dominant-negative oncohistone H3.3K36M mutant results in loss of neuroendocrine phenotypes and restores responsiveness to the AR inhibitor enzalutamide in mouse and human CRPC-NE organoids and grafts. Our findings indicate that NSD2 inhibition can reverse lineage plasticity and castration-resistance, and provide a potential new therapeutic target for CRPC-NE.

20.
Cancer Discov ; 13(2): 386-409, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36374194

RESUMO

Prioritizing treatments for individual patients with cancer remains challenging, and performing coclinical studies using patient-derived models in real time is often unfeasible. To circumvent these challenges, we introduce OncoLoop, a precision medicine framework that predicts drug sensitivity in human tumors and their preexisting high-fidelity (cognate) model(s) by leveraging drug perturbation profiles. As a proof of concept, we applied OncoLoop to prostate cancer using genetically engineered mouse models (GEMM) that recapitulate a broad spectrum of disease states, including castration-resistant, metastatic, and neuroendocrine prostate cancer. Interrogation of human prostate cancer cohorts by Master Regulator (MR) conservation analysis revealed that most patients with advanced prostate cancer were represented by at least one cognate GEMM-derived tumor (GEMM-DT). Drugs predicted to invert MR activity in patients and their cognate GEMM-DTs were successfully validated in allograft, syngeneic, and patient-derived xenograft (PDX) models of tumors and metastasis. Furthermore, OncoLoop-predicted drugs enhanced the efficacy of clinically relevant drugs, namely, the PD-1 inhibitor nivolumab and the AR inhibitor enzalutamide. SIGNIFICANCE: OncoLoop is a transcriptomic-based experimental and computational framework that can support rapid-turnaround coclinical studies to identify and validate drugs for individual patients, which can then be readily adapted to clinical practice. This framework should be applicable in many cancer contexts for which appropriate models and drug perturbation data are available. This article is highlighted in the In This Issue feature, p. 247.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Camundongos , Animais , Humanos , Neoplasias de Próstata Resistentes à Castração/patologia , Medicina de Precisão , Antagonistas de Receptores de Andrógenos , Transcriptoma , Perfilação da Expressão Gênica , Nitrilas , Receptores Androgênicos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA