Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Nat Rev Genet ; 22(5): 269-283, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33408383

RESUMO

Nearly all genetic variants that influence disease risk have human-specific origins; however, the systems they influence have ancient roots that often trace back to evolutionary events long before the origin of humans. Here, we review how advances in our understanding of the genetic architectures of diseases, recent human evolution and deep evolutionary history can help explain how and why humans in modern environments become ill. Human populations exhibit differences in the prevalence of many common and rare genetic diseases. These differences are largely the result of the diverse environmental, cultural, demographic and genetic histories of modern human populations. Synthesizing our growing knowledge of evolutionary history with genetic medicine, while accounting for environmental and social factors, will help to achieve the promise of personalized genomics and realize the potential hidden in an individual's DNA sequence to guide clinical decisions. In short, precision medicine is fundamentally evolutionary medicine, and integration of evolutionary perspectives into the clinic will support the realization of its full potential.


Assuntos
Doença/genética , Evolução Molecular , Nível de Saúde , Variação Genética , Humanos
2.
Annu Rev Entomol ; 67: 407-436, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34995089

RESUMO

All social insects defend their colony from predators, parasites, and pathogens. In Oster and Wilson's classic work, they posed one of the key paradoxes about defense in social insects: Given the universal necessity of defense, why then is there so much diversity in mechanisms? Ecological factors undoubtedly are important: Predation and usurpation have imposed strong selection on eusocial insects, and active defense by colonies is a ubiquitous feature of all social insects. The description of diverse insect groups with castes of sterile workers whose main duty is defense has broadened the purview of social evolution in insects, in particular with respect to caste and behavior. Defense is one of the central axes along which we can begin to organize and understand sociality in insects. With the establishment of social insect models such as the honey bee, new discoveries are emerging regarding the endocrine, neural, and gene regulatory mechanisms underlying defense in social insects. The mechanisms underlying morphological and behavioral defense traits may be shared across diverse groups, providing opportunities for identifying both conserved and novel mechanisms at work. Emerging themes highlight the context dependency of and interaction between factors that regulate defense in social insects.


Assuntos
Insetos , Comportamento Social , Animais , Abelhas , Comportamento Animal , Insetos/fisiologia , Fenótipo
3.
Bioessays ; 41(9): e1900072, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31373044

RESUMO

Novel regulatory elements that enabled expression of pre-existing immune genes in reproductive tissues and novel immune genes with pregnancy-specific roles in eutherians have shaped the evolution of mammalian pregnancy by facilitating the emergence of novel mechanisms for immune regulation over its course. Trade-offs arising from conflicting fitness effects on reproduction and host defenses have further influenced the patterns of genetic variation of these genes. These three mechanisms (novel regulatory elements, novel immune genes, and trade-offs) played a pivotal role in refining the regulation of maternal immune systems during pregnancy in eutherians, likely facilitating the establishment of prolonged direct maternal-fetal contact in eutherians without causing immunological rejection of the genetically distinct fetus.


Assuntos
Eutérios/genética , Eutérios/imunologia , Prenhez/imunologia , Animais , Evolução Biológica , Feminino , Duplicação Gênica , Regulação da Expressão Gênica , Variação Genética , Haplótipos , Humanos , Nascido Vivo , Gravidez , Prenhez/genética , Sequências Reguladoras de Ácido Nucleico , Retroviridae/genética , Seleção Genética
4.
J Hered ; 111(6): 531-538, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-32886780

RESUMO

Plant mitochondria and plastids display an array of inheritance patterns and varying levels of heteroplasmy, where individuals harbor more than 1 version of a mitochondrial or plastid genome. Organelle inheritance in plants has the potential to be quite complex and can vary with plant growth, development, and reproduction. Few studies have sought to investigate these complicated patterns of within-individual variation and inheritance using experimental crosses in plants. We carried out crosses in carrot, Daucus carota L. (Apiaceae), which has previously been shown to exhibit organellar heteroplasmy. We used mitochondrial and plastid markers to begin to disentangle the patterns of organellar inheritance and the fate of heteroplasmic variation, with special focus on cases where the mother displayed heteroplasmy. We also investigated heteroplasmy across the plant, assaying leaf samples at different development stages and ages. Mitochondrial and plastid paternal leakage was rare and offspring received remarkably similar heteroplasmic mixtures to their heteroplasmic mothers, indicating that heteroplasmy is maintained over the course of maternal inheritance. When offspring did differ from their mother, they were likely to exhibit a loss of the genetic variation that was present in their mother. Finally, we found that mitochondrial variation did not vary significantly over plant development, indicating that substantial vegetative sorting did not occur. Our study is one of the first to quantitatively investigate inheritance patterns and heteroplasmy in plants using controlled crosses, and we look forward to future studies making use of whole genome information to study the complex evolutionary dynamics of plant organellar genomes.


Assuntos
Daucus carota/genética , Genoma Mitocondrial/genética , Genoma de Planta/genética , Genomas de Plastídeos/genética , Heteroplasmia/genética , Herança Multifatorial/genética , Cruzamentos Genéticos , Evolução Molecular , Padrões de Herança/genética , Herança Materna , Mitocôndrias/genética , Organelas/genética , Filogenia , Plastídeos/genética
5.
Am Nat ; 192(1): E21-E36, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29897808

RESUMO

Most studies of adaptive radiation in animals focus on resource competition as the primary driver of trait divergence. The roles of other ecological interactions in shaping divergent phenotypes during such radiations have received less attention. We evaluate natural enemies as primary agents of diversifying selection on the phenotypes of an actively diverging lineage of gall midges on tall goldenrod. In this system, the gall of the midge consists of a biotrophic fungal symbiont that develops on host-plant leaves and forms distinctly variable protective carapaces over midge larvae. Through field studies, we show that fungal gall morphology, which is induced by midges (i.e., it is an extended phenotype), is under directional and diversifying selection by parasitoid enemies. Overall, natural enemies disruptively select for either small or large galls, mainly along the axis of gall thickness. These results imply that predators are driving the evolution of phenotypic diversity in symbiotic defense traits in this system and that divergence in defensive morphology may provide ecological opportunities that help to fuel the adaptive radiation of this genus of midges on goldenrods. This enemy-driven phenotypic divergence in a diversifying lineage illustrates the potential importance of consumer-resource and symbiotic species interactions in adaptive radiation.


Assuntos
Ascomicetos/fisiologia , Dípteros/genética , Tumores de Planta , Comportamento Predatório , Seleção Genética , Animais , Evolução Biológica , Dípteros/microbiologia , Larva/microbiologia , Solidago/genética , Solidago/microbiologia , Solidago/parasitologia , Vespas/fisiologia
6.
J Chem Ecol ; 44(9): 770-784, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29637490

RESUMO

Aphids have long been recognized as good phytochemists. They are small sap-feeding plant herbivores with complex life cycles that can involve cyclical parthenogenesis and seasonal host plant alternation, and most are plant specialists. Aphids have distinctive traits for identifying and exploiting their host plants, including the expression of polyphenisms, a form of discrete phenotypic plasticity characteristic of insects, but taken to extreme in aphids. In a relatively small number of species, a social polyphenism occurs, involving sub-adult "soldiers" that are behaviorally or morphologically specialized to defend their nestmates from predators. Soldiers are sterile in many species, constituting a form of eusociality and reproductive division of labor that bears striking resemblances with other social insects. Despite a wealth of knowledge about the chemical ecology of non-social aphids and their phytophagous lifestyles, the molecular and chemoecological mechanisms involved in social polyphenisms in aphids are poorly understood. We provide a brief primer on aspects of aphid life cycles and chemical ecology for the non-specialists, and an overview of the social biology of aphids, with special attention to chemoecological perspectives. We discuss some of our own efforts to characterize how host plant chemistry may shape social traits in aphids. As good phytochemists, social aphids provide a bridge between the study of insect social evolution sociality, and the chemical ecology of plant-insect interactions. Aphids provide many promising opportunities for the study of sociality in insects, and to understand both the convergent and novel traits that characterize complex sociality on plants.


Assuntos
Afídeos/fisiologia , Animais , Afídeos/crescimento & desenvolvimento , Comportamento Animal/efeitos dos fármacos , Ecossistema , Ácidos Graxos/química , Ácidos Graxos/farmacologia , Interações Hospedeiro-Parasita/efeitos dos fármacos , Larva/fisiologia , Estágios do Ciclo de Vida , Plantas/parasitologia , Comportamento Predatório
7.
Nucleic Acids Res ; 44(D1): D908-16, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26567549

RESUMO

Mammalian gestation and pregnancy are fast evolving processes that involve the interaction of the fetal, maternal and paternal genomes. Version 1.0 of the GEneSTATION database (http://genestation.org) integrates diverse types of omics data across mammals to advance understanding of the genetic basis of gestation and pregnancy-associated phenotypes and to accelerate the translation of discoveries from model organisms to humans. GEneSTATION is built using tools from the Generic Model Organism Database project, including the biology-aware database CHADO, new tools for rapid data integration, and algorithms that streamline synthesis and user access. GEneSTATION contains curated life history information on pregnancy and reproduction from 23 high-quality mammalian genomes. For every human gene, GEneSTATION contains diverse evolutionary (e.g. gene age, population genetic and molecular evolutionary statistics), organismal (e.g. tissue-specific gene and protein expression, differential gene expression, disease phenotype), and molecular data types (e.g. Gene Ontology Annotation, protein interactions), as well as links to many general (e.g. Entrez, PubMed) and pregnancy disease-specific (e.g. PTBgene, dbPTB) databases. By facilitating the synthesis of diverse functional and evolutionary data in pregnancy-associated tissues and phenotypes and enabling their quick, intuitive, accurate and customized meta-analysis, GEneSTATION provides a novel platform for comprehensive investigation of the function and evolution of mammalian pregnancy.


Assuntos
Bases de Dados Genéticas , Evolução Molecular , Gravidez/genética , Animais , Gatos , Bovinos , Cães , Feminino , Expressão Gênica , Genômica , Cobaias , Humanos , Camundongos , Especificidade de Órgãos , Fenótipo , Gravidez/metabolismo , Complicações na Gravidez/genética , Complicações na Gravidez/metabolismo , Coelhos , Ratos , Reprodução/genética
8.
Mol Ecol ; 26(23): 6742-6761, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29110382

RESUMO

Interactions between plants and herbivorous insects have been models for theories of specialization and co-evolution for over a century. Phytochemicals govern many aspects of these interactions and have fostered the evolution of adaptations by insects to tolerate or even specialize on plant defensive chemistry. While genomic approaches are providing new insights into the genes and mechanisms insect specialists employ to tolerate plant secondary metabolites, open questions remain about the evolution and conservation of insect counterdefences, how insects respond to the diversity defences mounted by their host plants, and the costs and benefits of resistance and tolerance to plant defences in natural ecological communities. Using a milkweed-specialist aphid (Aphis nerii) model, we test the effects of host plant species with increased toxicity, likely driven primarily by increased secondary metabolites, on aphid life history traits and whole-body gene expression. We show that more toxic plant species have a negative effect on aphid development and lifetime fecundity. When feeding on more toxic host plants with higher levels of secondary metabolites, aphids regulate a narrow, targeted set of genes, including those involved in canonical detoxification processes (e.g., cytochrome P450s, hydrolases, UDP-glucuronosyltransferases and ABC transporters). These results indicate that A. nerii marshal a variety of metabolic detoxification mechanisms to circumvent milkweed toxicity and facilitate host plant specialization, yet, despite these detoxification mechanisms, aphids experience reduced fitness when feeding on more toxic host plants. Disentangling how specialist insects respond to challenging host plants is a pivotal step in understanding the evolution of specialized diet breadths.


Assuntos
Afídeos/fisiologia , Asclepias/química , Aptidão Genética , Transcriptoma , Animais , Afídeos/genética , Fertilidade , Regulação da Expressão Gênica , Herbivoria , Inativação Metabólica , Metabolismo Secundário
9.
Nature ; 471(7339): E1-4; author reply E9-10, 2011 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-21430721

RESUMO

Arising from M. A. Nowak, C. E. Tarnita & E. O. Wilson 466, 1057-1062 (2010); Nowak et al. reply. Nowak et al. argue that inclusive fitness theory has been of little value in explaining the natural world, and that it has led to negligible progress in explaining the evolution of eusociality. However, we believe that their arguments are based upon a misunderstanding of evolutionary theory and a misrepresentation of the empirical literature. We will focus our comments on three general issues.


Assuntos
Altruísmo , Evolução Biológica , Aptidão Genética , Modelos Biológicos , Seleção Genética , Animais , Comportamento Cooperativo , Feminino , Teoria dos Jogos , Genética Populacional , Hereditariedade , Humanos , Masculino , Fenótipo , Reprodutibilidade dos Testes , Razão de Masculinidade
10.
Mol Ecol ; 24(22): 5751-66, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26460808

RESUMO

Social and brood parasitisms are nonconsumptive forms of parasitism involving the exploitation of the colonies or nests of a host. Such parasites are often related to their hosts and may evolve in various ecological contexts, causing evolutionary constraints and opportunities for both parasites and their hosts. In extreme cases, patterns of diversification between social parasites and their hosts can be coupled, such that diversity of one is correlated with or even shapes the diversity of the other. Aphids in the genus Tamalia induce galls on North American manzanita (Arctostaphylos) and related shrubs (Arbutoideae) and are parasitized by nongalling social parasites or inquilines in the same genus. We used RNA sequencing to identify and generate new gene sequences for Tamalia and performed maximum-likelihood, Bayesian and phylogeographic analyses to reconstruct the origins and patterns of diversity and host-associated differentiation in the genus. Our results indicate that the Tamalia inquilines are monophyletic and closely related to their gall-forming hosts on Arctostaphylos, supporting a previously proposed scenario for origins of these parasitic aphids. Unexpectedly, population structure and host-plant-associated differentiation were greater in the non-gall-inducing parasites than in their gall-inducing hosts. RNA-seq indicated contrasting patterns of gene expression between host aphids and parasites, and perhaps functional differences in host-plant relationships. Our results suggest a mode of speciation in which host plants drive within-guild diversification in insect hosts and their parasites. Shared host plants may be sufficient to promote the ecological diversification of a network of phytophagous insects and their parasites, as exemplified by Tamalia aphids.


Assuntos
Afídeos/genética , Arctostaphylos/parasitologia , Interações Hospedeiro-Parasita , Filogenia , Animais , Arizona , Teorema de Bayes , California , Variação Genética , Funções Verossimilhança , Nevada , Parasitos/genética , Filogeografia , Tumores de Planta/parasitologia , Análise de Sequência de RNA
11.
Mol Phylogenet Evol ; 68(2): 221-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23542649

RESUMO

Carotenoids are conjugated isoprenoid molecules with many important physiological functions in organisms, including roles in photosynthesis, oxidative stress reduction, vision, diapause, photoperiodism, and immunity. Until recently, it was believed that only plants, microorganisms, and fungi were capable of synthesizing carotenoids and that animals acquired them from their diet, but recent studies have demonstrated that two arthropods (pea aphid and spider mite) possess a pair of genes homologous to those required for the first step of carotenoid biosynthesis. Absent in all other known animal genomes, these genes appear to have been acquired by aphids and spider mites in one or several lateral gene transfer events from a fungal donor. We report the third case of fungal carotenoid biosynthesis gene homologs in an arthropod: flies from the family Cecidomyiidae, commonly known as gall midges. Using phylogenetic analyses we show that it is unlikely that lycopene cyclase/phytoene synthase and phytoene desaturase homologs were transferred singly to an ancient arthropod ancestor; instead we propose that genes were transferred independently from related fungal donors after divergence of the major arthropod lineages. We also examine variation in intron placement and copy number of the carotenoid genes that may underlie function in the midges. This trans-kingdom transfer of carotenoid genes may represent a key innovation, underlying the evolution of phytophagy and plant-galling in gall midges and facilitating their extensive diversification across plant lineages.


Assuntos
Carotenoides/biossíntese , Dípteros/genética , Transferência Genética Horizontal , Proteínas de Insetos/genética , Oxirredutases/genética , Animais , Carotenoides/genética , Dípteros/enzimologia , Evolução Molecular , Dosagem de Genes , Genes Fúngicos , Geranil-Geranildifosfato Geranil-Geraniltransferase/genética , Liases Intramoleculares/genética , Funções Verossimilhança , Anotação de Sequência Molecular , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA
12.
Proc Biol Sci ; 278(1713): 1814-22, 2011 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-21106596

RESUMO

Fungus-growing ants (tribe Attini) engage in a mutualism with a fungus that serves as the ants' primary food source, but successful fungus cultivation is threatened by microfungal parasites (genus Escovopsis). Actinobacteria (genus Pseudonocardia) associate with most of the phylogenetic diversity of fungus-growing ants; are typically maintained on the cuticle of workers; and infection experiments, bioassay challenges and chemical analyses support a role of Pseudonocardia in defence against Escovopsis through antibiotic production. Here we generate a two-gene phylogeny for Pseudonocardia associated with 124 fungus-growing ant colonies, evaluate patterns of ant-Pseudonocardia specificity and test Pseudonocardia antibiotic activity towards Escovopsis. We show that Pseudonocardia associated with fungus-growing ants are not monophyletic: the ants have acquired free-living strains over the evolutionary history of the association. Nevertheless, our analysis reveals a significant pattern of specificity between clades of Pseudonocardia and groups of related fungus-growing ants. Furthermore, antibiotic assays suggest that despite Escovopsis being generally susceptible to inhibition by diverse Actinobacteria, the ant-derived Pseudonocardia inhibit Escovopsis more strongly than they inhibit other fungi, and are better at inhibiting this pathogen than most environmental Pseudonocardia strains tested. Our findings support a model that many fungus-growing ants maintain specialized Pseudonocardia symbionts that help with garden defence.


Assuntos
Actinomycetales/classificação , Formigas/microbiologia , Evolução Biológica , Filogenia , Simbiose , Actinomycetales/genética , Actinomycetales/fisiologia , Animais , Proteínas de Bactérias/genética , Biodiversidade , Hypocreales/fisiologia , Fator Tu de Elongação de Peptídeos/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da Espécie
13.
Mol Biol Evol ; 26(12): 2731-44, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19706727

RESUMO

Next-generation sequencing has opened the door to genomic analysis of nonmodel organisms. Technologies generating long-sequence reads (200-400 bp) are increasingly used in evolutionary studies of nonmodel organisms, but the short-sequence reads (30-50 bp) that can be produced at lower cost are thought to be of limited utility for de novo sequencing applications. Here, we tested this assumption by short-read sequencing the transcriptomes of the tropical disease vectors Aedes aegypti and Anopheles gambiae, for which complete genome sequences are available. Comparison of our results to the reference genomes allowed us to accurately evaluate the quantity, quality, and functional and evolutionary information content of our "test" data. We produced more than 0.7 billion nucleotides of sequenced data per species that assembled into more than 21,000 test contigs larger than 100 bp per species and covered approximately 27% of the Aedes reference transcriptome. Remarkably, the substitution error rate in the test contigs was approximately 0.25% per site, with very few indels or assembly errors. Test contigs of both species were enriched for genes involved in energy production and protein synthesis and underrepresented in genes involved in transcription and differentiation. Ortholog prediction using the test contigs was accurate across hundreds of millions of years of evolution. Our results demonstrate the considerable utility of short-read transcriptome sequencing for genomic studies of nonmodel organisms and suggest an approach for assessing the information content of next-generation data for evolutionary studies.


Assuntos
Aedes/genética , Anopheles/genética , Evolução Molecular , Perfilação da Expressão Gênica/métodos , Genômica/métodos , Análise de Sequência de DNA/métodos , Processamento Alternativo/genética , Substituição de Aminoácidos/genética , Animais , Mapeamento de Sequências Contíguas , Feminino , Mutação INDEL/genética , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Proteoma/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Padrões de Referência , Homologia de Sequência do Ácido Nucleico
14.
Am Nat ; 175(6): E126-33, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20415533

RESUMO

The mutualistic symbiosis between fungus-gardening ants and their cultivars has made fundamental contributions to our understanding of the coevolution of complex species interactions. Reciprocal specialization and vertical symbiont cotransmission are thought to promote a pattern of largely synchronous coevolutionary diversification in attines. Here we test this hypothesis by inferring the first time-calibrated multigene phylogeny of the lepiotaceous attine cultivars and comparing it with the recently published fossil-anchored phylogeny of the attine ants. While this comparison reveals some possible cases of synchronous origins of ant and fungal clades, there were a number of surprising asynchronies. For example, leaf-cutter cultivars appear to be significantly younger than the corresponding ant genera. Similarly, a clade of fungi interacting with primitive fungus-gardening ants--thought to be ancestral to the more derived leaf-cutter symbionts--appears instead to be a more recent acquisition from free-living stock. These macroevolutionary patterns are consistent with recent population-level studies suggesting occasional acquisition of novel cultivar types from environmental sources and horizontal transmission of cultivars between different ant species. Horizontal transmission events, even if rare, appear to form loose ecological connections between diffusely coevolving ant and fungus lineages that permit punctuated changes in the topology of the mutualistic ant-fungus interaction network.


Assuntos
Agaricales/genética , Formigas/genética , Filogenia , Simbiose , Animais
15.
Mol Phylogenet Evol ; 54(1): 194-210, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19765662

RESUMO

Gall-forming insects provide ideal systems to analyze the evolution of host-parasite interactions and understand the ecological interactions that contribute to evolutionary diversification. Flies in the family Cecidomyiidae represent the largest radiation of gall-forming insects and are characterized by complex trophic interactions with plants, fungal symbionts, and predators. We analyzed the phylogenetic history and evolutionary associations of the North American cecidomyiid genus Asteromyia, which is engaged in a complex and perhaps co-evolving community of interactions with host-plants, fungi, and parasitoids. Mitochondrial gene trees generally support current classifications, but reveal extensive cryptic diversity within the eight named species. Asteromyia likely radiated after their associated host-plants in the Astereae, but species groups exhibit strong associations with specific lineages of Astereae. Evolutionary associations with fungal mutualists are dynamic, however, and suggest rapid and perhaps coordinated changes across trophic levels.


Assuntos
Dípteros/genética , Evolução Molecular , Especiação Genética , Filogenia , Plantas/parasitologia , Animais , DNA Mitocondrial/genética , Dípteros/classificação , Ecologia , Fungos/fisiologia , Genes de Insetos , Interações Hospedeiro-Parasita/genética , Análise de Sequência de DNA , Especificidade da Espécie , Simbiose
16.
Trends Ecol Evol ; 35(3): 259-277, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31791830

RESUMO

Transcriptomic studies lend insights into the role of transcriptional plasticity in adaptation and specialization. Recently, there has been growing interest in understanding the relationship between variation in herbivorous insect gene expression and the evolution of diet breadth. We review the studies that have emerged on insect gene expression and host plant use, and outline the questions and approaches in the field. Many candidate genes underlying herbivory and specialization have been identified, and a few key studies demonstrate increased transcriptional plasticity associated with generalist compared with specialist species. Addressing the roles that transcriptional variation plays in insect diet breadth will have important implications for our understanding of the evolution of specialization and the genetic and environmental factors that govern insect-plant interactions.


Assuntos
Herbivoria , Insetos , Animais , Dieta , Insetos/genética , Plantas/genética
17.
Nat Commun ; 11(1): 3731, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32709900

RESUMO

Currently, there is no comprehensive framework to evaluate the evolutionary forces acting on genomic regions associated with human complex traits and contextualize the relationship between evolution and molecular function. Here, we develop an approach to test for signatures of diverse evolutionary forces on trait-associated genomic regions. We apply our method to regions associated with spontaneous preterm birth (sPTB), a complex disorder of global health concern. We find that sPTB-associated regions harbor diverse evolutionary signatures including conservation, excess population differentiation, accelerated evolution, and balanced polymorphism. Furthermore, we integrate evolutionary context with molecular evidence to hypothesize how these regions contribute to sPTB risk. Finally, we observe enrichment in signatures of diverse evolutionary forces in sPTB-associated regions compared to genomic background. By quantifying multiple evolutionary forces acting on sPTB-associated regions, our approach improves understanding of both functional roles and the mosaic of evolutionary forces acting on loci. Our work provides a blueprint for investigating evolutionary pressures on complex traits.


Assuntos
Evolução Molecular , Genoma , Nascimento Prematuro/genética , Alelos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Herança Multifatorial , Fenótipo , Gravidez
18.
J Chem Ecol ; 35(11): 1309-19, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19943186

RESUMO

Insects lack the ability to synthesize sterols de novo, which are required as cell membrane inserts and as precursors for steroid hormones. Herbivorous insects typically utilize cholesterol as their primary sterol. However, plants rarely contain cholesterol, and herbivorous insects must, therefore, produce cholesterol by metabolizing plant sterols. Previous studies have shown that insects generally display diversity in phytosterol metabolism. Despite the biological importance of sterols, there has been no investigation of their metabolism in a naturally occurring herbivorous insect community. Therefore, we determined the neutral sterol profile of Solidago altissima L., six taxonomically and ecologically diverse herbivorous insect associates, and the fungal symbiont of one herbivore. Our results demonstrated that S. altissima contained Delta(7)-sterols (spinasterol, 22-dihydrospinasterol, avenasterol, and 24-epifungisterol), and that 85% of the sterol pool existed in a conjugated form. Despite feeding on a shared host plant, we observed significant variation among herbivores in terms of their qualitative tissue sterol profiles and significant variation in the cholesterol content. Cholesterol was absent in two dipteran gall-formers and present at extremely low levels in a beetle. Cholesterol content was highly variable in three hemipteran phloem feeders; even species of the same genus showed substantial differences in their cholesterol contents. The fungal ectosymbiont of a dipteran gall former contained primarily ergosterol and two ergosterol precursors. The larvae and pupae of the symbiotic gall-former lacked phytosterols, phytosterol metabolites, or cholesterol, instead containing an ergosterol metabolite in addition to unmetabolized ergosterol and erogsterol precursors, thus demonstrating the crucial role that a fungal symbiont plays in their nutritional ecology. These data are discussed in the context of sterol physiology and metabolism in insects, and the potential ecological and evolutionary implications.


Assuntos
Cadeia Alimentar , Insetos/metabolismo , Fitosteróis/metabolismo , Solidago/metabolismo , Animais , Ascomicetos/metabolismo , Ascomicetos/fisiologia , Dieta , Feminino , Insetos/classificação , Insetos/fisiologia , Filogenia , Folhas de Planta/metabolismo , Simbiose
19.
Curr Opin Insect Sci ; 36: 149-156, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31698152

RESUMO

The transition to herbivory by insects is associated with distinct genomic signatures. Sequenced genomes of extant herbivore species reveal the result of these transitions, but in lieu of comparisons between herbivorous and non-herbivorous lineages that diverged recently, such datasets have shed less light on the evolutionary genomic processes involved in diet shifts to or from herbivory. Here, we propose that the comparative genomics of diet shifts between closely related insect herbivores and non-herbivores, and within densely-sampled clades of herbivores, will help reveal the extent to which herbivory evolves through the co-option and subtle remodeling of widely-conserved gene families with functions ancestrally distinct from phytophagy.


Assuntos
Genoma de Inseto , Herbivoria , Insetos/genética , Animais , Evolução Biológica , Dieta , Insetos/fisiologia , Plantas/química
20.
G3 (Bethesda) ; 9(8): 2761-2774, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31213516

RESUMO

Evolutionary changes in enhancers are widely associated with variation in human traits and diseases. However, studies comprehensively quantifying levels of selection on enhancers at multiple evolutionary periods during recent human evolution and how enhancer evolution varies across human tissues are lacking. To address these questions, we integrated a dataset of 41,561 transcribed enhancers active in 41 different human tissues (FANTOM Consortium) with whole genome sequences of 1,668 individuals from the African, Asian, and European populations (1000 Genomes Project). Our analyses based on four different metrics (Tajima's D, FST, H12, nSL) showed that ∼5.90% of enhancers showed evidence of recent positive selection and that genes associated with enhancers under very recent positive selection are enriched for diverse immune-related functions. The distributions of these metrics for brain and testis enhancers were often statistically significantly different and in the direction suggestive of less positive selection compared to those of other tissues; the same was true for brain and testis enhancers that are tissue-specific compared to those that are tissue-broad and for testis enhancers associated with tissue-enriched and non-tissue-enriched genes. These differences varied considerably across metrics and tissues and were generally in the form of changes in distributions' shapes rather than shifts in their values. Collectively, these results suggest that many human enhancers experienced recent positive selection throughout multiple time periods in human evolutionary history, that this selection occurred in a tissue-dependent and immune-related functional context, and that much like the evolution of their protein-coding gene counterparts, the evolution of brain and testis enhancers has been markedly different from that of enhancers in other tissues.


Assuntos
Elementos Facilitadores Genéticos , Genômica , Seleção Genética , Elementos de DNA Transponíveis , Bases de Dados Genéticas , Evolução Molecular , Estudo de Associação Genômica Ampla , Genômica/métodos , Humanos , Imunidade/genética , Especificidade de Órgãos , Característica Quantitativa Herdável
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA