Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Pharmacol Toxicol ; 62: 447-464, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34516289

RESUMO

Since prehistory, human species have depended on plants for both food and medicine. Even in countries with ready access to modern medicines, alternative treatments are still highly regarded and commonly used. Unlike modern pharmaceuticals, many botanical medicines are in widespread use despite a lack of safety and efficacy data derived from controlled clinical trials and often unclear mechanisms of action. Contributing to this are the complex and undefined composition and likely multifactorial mechanisms of action and multiple targets of many botanical medicines. Here, we review the newfound importance of the ubiquitous KCNQ subfamily of voltage-gated potassium channels as targets for botanical medicines, including basil, capers, cilantro, lavender, fennel, chamomile, ginger, and Camellia, Sophora, and Mallotus species. We discuss the implications for the traditional use of these plants for disorders such as seizures, hypertension, and diabetes and the molecular mechanisms of plant secondary metabolite effects on KCNQ channels.


Assuntos
Canais de Potássio KCNQ , Medicina Tradicional , Humanos , Canais de Potássio KCNQ/metabolismo
2.
Brain ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38537648

RESUMO

Dopamine's role as the principal neurotransmitter in motor functions has long been accepted. We broaden this conventional perspective by demonstrating the involvement of non-dopaminergic mechanisms. In mouse models of Parkinson's Disease (PD), we observed that L-DOPA elicited a substantial motor response even when its conversion to dopamine was blocked by inhibiting the enzyme aromatic amino acid decarboxylase (AADC). Remarkably, the motor activity response to L-DOPA in the presence of an AADC inhibitor (NSD1015) showed a delayed onset, yet greater intensity and longer duration, peaking at 7 hours, compared to when L-DOPA was administered alone. This suggests an alternative pathway or mechanism, independent of dopamine signaling, mediating the motor functions. We sought to determine the metabolites associated with the pronounced hyperactivity observed, using comprehensive metabolomics analysis. Our results revealed that the peak in motor activity induced by NSD1015/L-DOPA in PD mice is associated with a surge (20-fold) in brain levels of the tripeptide ophthalmic acid (OA, also known as ophthalmate in its anionic form). Interestingly, we found that administering ophthalmate directly to the brain rescued motor deficits in PD mice in a dose-dependent manner. We investigated the molecular mechanisms underlying ophthalmate's action and discovered, through radioligand binding and cAMP-luminescence assays, that ophthalmate binds to and activates the calcium-sensing receptor (CaSR). Additionally, our findings demonstrated that a CaSR antagonist inhibits the motor-enhancing effects of ophthalmate, further solidifying the evidence that ophthalmate modulates motor functions through the activation of the CaSR. The discovery of ophthalmate as a novel regulator of motor function presents significant potential to transform our understanding of brain mechanisms of movement control and the therapeutic management of related disorders.

3.
FASEB J ; 37(7): e22999, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37249366

RESUMO

Sudden cardiac death (SCD) remains a major cause of global mortality. In addition to modern interventions, botanical folk medicines have long been used to treat cardiovascular disease, although the efficacy and underlying mechanisms are often unresolved. Aloperine, a bioactive quinolizidine alkaloid isolated from Sophora alopecuroides plants, exhibits antioxidant, anti-inflammatory, antitumor, and vasorelaxant properties, but possible antiarrhythmic effects of aloperine in SCD are unclear. Here, we examined whether aloperine protects against ischemia and reperfusion injury-associated lethal ventricular arrhythmia and sudden cardiac death. Rats were divided into sham, control, and aloperine groups, and reperfusion-provoked ventricular arrhythmogenesis, cardiac damage markers, and signaling pathways quantified following left main coronary artery ischemia and reperfusion. In vitro studies of effects of aloperine on hERG and Kv4.3 cardiac voltage-gated potassium (Kv) channels were performed using two-electrode voltage clamp analysis of cloned channels expressed in Xenopus laevis oocytes. Aloperine pretreatment (10 mg/kg) did not affect baseline cardiac electrical stability; yet, it reduced ventricular arrhythmogenesis and susceptibility to SCD (mortality rate: control: 64.3%; aloperine: 0%) induced by reperfusion injury. Aloperine also reduced serum levels of LDH, CK-MB, α-HBDH, and cTnI post-I/R, and stimulated phosphorylation of ventricular ERK1/2 and STAT-3, which are key components of RISK and SAFE signaling pathways. Inhibition of either ERK1/2 (with U0126) or STAT-3 (with Ag490) abolished aloperine-induced anti-arrhythmic effects and ERK1/2 and STAT-3 phosphorylation. Interestingly, while aloperine (100 µM) had no effect on cloned Kv4.3 activity, aloperine (1 µM and up) negative-shifted the voltage dependence of hERG activation by ~10 mV and increased peak hERG current by 35%. Thus, aloperine exerts striking anti-arrhythmic effects against myocardial ischemia and reperfusion injury-induced severe lethal ventricular arrhythmia and sudden cardiac death via the ERK1/2/STAT-3 signaling pathway, with potential additional contribution from increased cardiac myocyte repolarization capacity via augmented hERG activity.


Assuntos
Alcaloides , Traumatismo por Reperfusão Miocárdica , Ratos , Animais , Antiarrítmicos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/metabolismo , Morte Súbita Cardíaca/prevenção & controle , Miócitos Cardíacos/metabolismo , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/prevenção & controle , Piperidinas/farmacologia , Alcaloides/farmacologia
4.
FASEB J ; 37(9): e23125, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37535015

RESUMO

The evergreen plant rosemary (Salvia rosmarinus) has been employed medicinally for centuries as a memory aid, analgesic, spasmolytic, vasorelaxant and antihypertensive, with recent preclinical and clinical evidence rationalizing some applications. Voltage-gated potassium (Kv) channels in the KCNQ (Kv7) subfamily are highly influential in the nervous system, muscle and epithelia. KCNQ4 and KCNQ5 regulate vascular smooth muscle excitability and contractility and are implicated as antihypertensive drug targets. Here, we found that rosemary extract potentiates homomeric and heteromeric KCNQ4 and KCNQ5 activity, resulting in membrane hyperpolarization. Two rosemary diterpenes, carnosol and carnosic acid, underlie the effects and, like rosemary, are efficacious KCNQ-dependent vasorelaxants, quantified by myography in rat mesenteric arteries. Sex- and estrous cycle stage-dependence of the vasorelaxation matches sex- and estrous cycle stage-dependent KCNQ expression. The results uncover a molecular mechanism underlying rosemary vasorelaxant effects and identify new chemical spaces for KCNQ-dependent vasorelaxants.


Assuntos
Plantas Medicinais , Rosmarinus , Ratos , Animais , Músculo Liso Vascular/fisiologia , Canais de Potássio KCNQ , Vasodilatadores/farmacologia
5.
Cardiovasc Drugs Ther ; 38(2): 279-295, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36609949

RESUMO

OBJECTIVE: The SGLT2 inhibitor, canagliflozin, not only reduces glycemia in patients with type 2 diabetes but also exerts cardioprotective effects in individuals without diabetes. However, its potential beneficial effects in cardiac arrest have not been characterized. The purpose of this study was to examine the protective effect of canagliflozin pretreatment on postresuscitation-induced cardiac dysfunction in vivo. METHODS: Male C57/BL6 mice were randomized to vehicle (sham and control) or canagliflozin treatment groups. All mice except for the sham-operated mice were subjected to potassium chloride-induced cardiac arrest followed by chest compressions and intravenous epinephrine for resuscitation. Canagliflozin therapy efficacies were evaluated by electrocardiogram, echocardiography, histological analysis, inflammatory response, serum markers of myocardial injury, protein phosphorylation analysis, and immunohistological assessment. RESULTS: Canagliflozin-pretreated mice exhibited a higher survival rate (P < 0.05), a shorter return of spontaneous circulation (ROSC) time (P < 0.01) and a higher neurological score (P < 0.01 or P < 0.001) than control mice after resuscitation. Canagliflozin was effective at improving cardiac arrest and resuscitation-associated cardiac dysfunction, indicated by increased left ventricular ejection fraction and fractional shortening (P < 0.001). Canagliflozin reduced serum levels of LDH, CK-MB and α-HBDH, ameliorated systemic inflammatory response, and diminished the incidence of early resuscitation-induced arrhythmia. Notably, canagliflozin promoted phosphorylation of cardiac STAT-3 postresuscitation. Furthermore, pharmacological inhibition of STAT-3 by Ag490 blunted STAT-3 phosphorylation and abolished the cardioprotective actions of canagliflozin. CONCLUSIONS: Canagliflozin offered a strong cardioprotective effect against cardiac arrest and resuscitation-induced cardiac dysfunction. This canagliflozin-induced cardioprotection is mediated by the STAT-3-dependent cell-survival signaling pathway.


Assuntos
Cardiomiopatias , Reanimação Cardiopulmonar , Diabetes Mellitus Tipo 2 , Parada Cardíaca , Animais , Humanos , Masculino , Camundongos , Canagliflozina/farmacologia , Modelos Animais de Doenças , Volume Sistólico , Função Ventricular Esquerda
6.
Physiology (Bethesda) ; 37(5): 0, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35797055

RESUMO

Voltage-gated potassium (Kv) channels each comprise four pore-forming α-subunits that orchestrate essential duties such as voltage sensing and K+ selectivity and conductance. In vivo, however, Kv channels also incorporate regulatory subunits-some Kv channel specific, others more general modifiers of protein folding, trafficking, and function. Understanding all the above is essential for a complete picture of the role of Kv channels in physiology and disease.


Assuntos
Canais de Potássio de Abertura Dependente da Tensão da Membrana , Humanos , Potássio/metabolismo , Canais de Potássio/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Subunidades Proteicas/metabolismo
7.
Am J Physiol Regul Integr Comp Physiol ; 324(6): R747-R760, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37036302

RESUMO

Torsion of the spermatic cord is a urological emergency that must be treated immediately with surgery, yet detorsion of the testis can cause testicular tissue damage because of ischemia-reperfusion (I/R) injury. I/R injury is a complex pathophysiological process that may affect the functions of distant organs. Here, we examined whether testicular torsion/detorsion (TT) causes myocardial dysfunction. We next investigated the potential beneficial effect and underlying mechanisms of remote ischemic postconditioning (RIPost) on cardiac function after testicular torsion/detorsion. Male Sprague-Dawley rats were assigned to three different sets of experimental groups. Testicular I/R was induced by rotating the right testis to 1080° clockwise for 3 h followed by 3 h of detorsion. RIPost was induced at the onset of testicular detorsion by four cycles of 5-min bilateral femoral artery occlusion with 5-min reperfusion. Cardiac function was determined postdetorsion, and the cardioprotective effect of RIPost was examined. Testicular torsion/detorsion-treated rats had reduced serum testosterone levels, impaired systemic hemodynamics, elevated systemic inflammatory responses, and increased serum levels of lactate dehydrogenase (LDH), creatine kinase-MB (CK-MB), α-hydroxybutyrate dehydrogenase (α-HBDH), and cardiac troponin I (cTnI). However, RIPost attenuated remote heart dysfunction induced by testicular torsion/detorsion. Furthermore, RIPost enhanced the phosphorylation of ventricular signal transducer and activator of transcription (STAT)-3, which is a key component of the survivor activating factor enhancement (SAFE) signaling pathways. Inhibition of STAT-3 with Ag490 abolished the RIPost-induced cardioprotection and STAT-3 phosphorylation. Testicular torsion followed by detorsion may cause impaired cardiac function in rats. RIPost effectively attenuates this remote cardiac dysfunction. RIPost-induced protective effects may be mediated by the STAT-3 signaling pathway.


Assuntos
Pós-Condicionamento Isquêmico , Traumatismo por Reperfusão , Torção do Cordão Espermático , Humanos , Ratos , Masculino , Animais , Torção do Cordão Espermático/complicações , Torção do Cordão Espermático/metabolismo , Torção do Cordão Espermático/prevenção & controle , Ratos Sprague-Dawley , Pós-Condicionamento Isquêmico/efeitos adversos , Testículo/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo
8.
FASEB J ; 36(9): e22457, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35997997

RESUMO

Tree and shrub barks have been used as folk medicine by numerous cultures across the globe for millennia, for a variety of indications, including as vasorelaxants and antispasmodics. Here, using electrophysiology and myography, we discovered that the KCNQ5 voltage-gated potassium channel mediates vascular smooth muscle relaxant effects of barks used in Native American folk medicine. Bark extracts (1%) from Birch, Cramp Bark, Slippery Elm, White Oak, Red Willow, White Willow, and Wild Cherry each strongly activated KCNQ5 expressed in Xenopus oocytes. Testing of a subset including both the most and the least efficacious extracts revealed that Red Willow, White Willow, and White Oak KCNQ-dependently relaxed rat mesenteric arteries; in contrast, Black Haw bark neither activated KCNQ5 nor induced vasorelaxation. Two compounds common to the active barks (gallic acid and tannic acid) had similarly potent and efficacious effects on both KCNQ5 activation and vascular relaxation, and this together with KCNQ5 modulation by other tannins provides a molecular basis for smooth muscle relaxation effects of Native American folk medicine bark extracts.


Assuntos
Canais de Potássio KCNQ , Vasodilatadores , Animais , Humanos , Artérias Mesentéricas , Ratos , Taninos/farmacologia , Vasodilatadores/farmacologia , Indígena Americano ou Nativo do Alasca
9.
Neurobiol Dis ; 171: 105799, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35750148

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease characterized by Amyloid-ß peptide (Aß) containing plaques and cognitive deficits. The pathophysiology of AD also involves neuroinflammation. Vitamin B1 (thiamin) is indispensable for normal cellular energy metabolism. Thiamin homeostasis is altered in AD, and its deficiency is known to aggravate AD pathology. Little, however, is known about possible alterations in level of expression of thiamin transporters-1 and -2 (THTR-1 and -2) in the brain of AD, and whether pro-inflammatory cytokines affect thiamin uptake by brain cells. We addressed these issues using brain tissue samples [prefrontal cortex (PFC) and hippocampus (HIP)] from AD patients and from 5XFAD mouse model of AD, together with cultured human neuroblastoma SH-SY5Y cells as model. Our results revealed a significantly lower expression of both THTR-1 and THTR-2 in the PFC and HIP of AD patients and 5XFAD mouse model of AD compared to appropriate normal controls. Further, we found that exposure of the SH-SY5Y cells to pro-inflammatory cytokines (IL-1ß, IL-6, and TNF-α) led to a significant inhibition in thiamin uptake. Focusing on IL-1ß, we found the inhibition in thiamin uptake to be time-dependent and reversible; it was also associated with a substantial reduction in expression of THTR-1 (but not THTR-2) protein and mRNA as well as a decrease in promoter activity of the SLC19A2 gene (which encodes THTR-1). Finally, using transcriptomic analysis, we found that thiamin availability in SH-SY5Y cells caused changes in the expression of genes relevant to AD pathways. These studies demonstrate, for the first time, that thiamin transport physiology/molecular biology parameters are negatively impacted in AD brain and that pro-inflammatory cytokines inhibit thiamin uptake by neuroblastoma cells. The results also support a possible role for thiamin in the pathophysiology of AD.


Assuntos
Doença de Alzheimer , Neuroblastoma , Doenças Neurodegenerativas , Células Acinares/metabolismo , Células Acinares/patologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Citocinas/metabolismo , Humanos , Proteínas de Membrana Transportadoras , Camundongos , Camundongos Transgênicos , Neuroblastoma/patologia , Doenças Neurodegenerativas/metabolismo , Doenças Neuroinflamatórias , Tiamina/metabolismo
10.
J Pharmacol Exp Ther ; 380(3): 230-241, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34893552

RESUMO

Ischemia/reperfusion (I/R) injury of the lung can lead to extensive pulmonary damage. Sodium-glucose cotransporter-2 (SGLT2) inhibitors are insulin-independent, oral antihyperglycemic agents used for treating type 2 diabetes mellitus (T2DM). Although their cardioprotective properties have been reported, their potential roles in pulmonary protection in vivo are poorly characterized. Here, we tested a hypothesis that empagliflozin, an SGLT2 inhibitor, can protect lungs in a mouse model of lung I/R injury induced by pulmonary hilum ligation in vivo. We assigned C57/BL6 mice to sham-operated, nonempagliflozin-treated control, or empagliflozin-treated groups. Pulmonary I/R injury was induced by 1-hour left hilum ligation followed by 2-hour reperfusion. Using quantitative polymerase chain reaction (q-PCR) and Western blot analysis, we demonstrate that SGLT2 is highly expressed in mouse kidney but is weakly expressed in mouse lung (n = 5-6 per group, P < 0.01 or P < 0.001). Empagliflozin improved respiratory function, attenuated I/R-induced lung edema, lessened structural damage, inhibited apoptosis, and reduced inflammatory cytokine production and protein concentration in bronchoalveolar lavage (BAL) fluid [P < 0.05 or P < 0.001 versus control group (CON)]. In addition, empagliflozin enhanced phosphorylation of pulmonary extracellular signal-regulated kinases 1 and 2 (ERK1/2) post-I/R injury in vivo (P < 0.001, versus CON, n = 5 per group). We further showed that pharmacological inhibition of ERK1/2 activity reversed these beneficial effects of empagliflozin. In conclusion, we showed that empagliflozin exerts strong lung protective effects against pulmonary I/R injury in vivo, at least in part via the ERK1/2-mediated signaling pathway. SIGNIFICANCE STATEMENT: Pulmonary ischemia-reperfusion (I/R) can exacerbate lung injury. Empagliflozin is a new antidiabetic agent for type 2 diabetes mellitus. This study shows that empagliflozin attenuates lung damage after pulmonary I/R injury in vivo. This protective phenomenon was mediated at least in part via the extracellular signal-regulated kinases 1 and 2-mediated signaling pathway. This opens a new avenue of research for sodium-glucose cotransporter-2 inhibitors in the treatment of reperfusion-induced acute pulmonary injury.


Assuntos
Diabetes Mellitus Tipo 2 , Traumatismo por Reperfusão , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Compostos Benzidrílicos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glucose/metabolismo , Glucosídeos , Pulmão , Camundongos , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Sódio/metabolismo , Transportador 2 de Glucose-Sódio/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico
11.
Proc Natl Acad Sci U S A ; 116(42): 21236-21245, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31570602

RESUMO

Botanical folk medicines have been used throughout human history to treat common disorders such as hypertension, often with unknown underlying mechanisms. Here, we discovered that hypotensive folk medicines from a genetically diverse range of plant species each selectively activated the vascular-expressed KCNQ5 potassium channel, a feature lacking in the modern synthetic pharmacopeia, whereas nonhypotensive plant extracts did not. Analyzing constituents of the hypotensive Sophora flavescens root, we found that the quinolizidine alkaloid aloperine is a KCNQ-dependent vasorelaxant that potently and isoform-selectively activates KCNQ5 by binding near the foot of the channel voltage sensor. Our findings reveal that KCNQ5-selective activation is a defining molecular mechanistic signature of genetically diverse traditional botanical hypotensives, transcending plant genus and human cultural boundaries. Discovery of botanical KCNQ5-selective potassium channel openers may enable future targeted therapies for diseases including hypertension and KCNQ5 loss-of-function encephalopathy.


Assuntos
Canais de Potássio KCNQ/metabolismo , Animais , Masculino , Medicina Tradicional/métodos , Raízes de Plantas/química , Ratos , Ratos Wistar
12.
J Physiol ; 599(11): 2851-2868, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33709461

RESUMO

KEY POINTS: We report a novel method for the transient expression of SARS-CoV-2 envelope (E) protein in intracellular organelles and the plasma membrane of mammalian cells and Xenopus oocytes. Intracellular expression of SARS-CoV-2 E protein increases intra-Golgi pH. By targeting the SARS-CoV-2 E protein to the plasma membrane, we show that it forms a cation channel, viroporin, that is modulated by changes of pH. This method for studying the activity of viroporins may facilitate screening for new antiviral drugs to identify novel treatments for COVID-19. ABSTRACT: The envelope (E) protein of coronaviruses such as SARS-CoV-1 is proposed to form an ion channel or viroporin that participates in viral propagation and pathogenesis. Here we developed a technique to study the E protein of SARS-CoV-2 in mammalian cells by directed targeting using a carboxyl-terminal fluorescent protein tag, mKate2. The wild-type SARS-CoV-2 E protein can be trafficked to intracellular organelles, notably the endoplasmic reticulum-Golgi intermediate complex, where its expression increases pH inside the organelle. We also succeeded in targeting SARS-CoV-2 E to the plasma membrane, which enabled biophysical analysis using whole-cell patch clamp recording in a mammalian cell line, HEK 293 cells, and two-electrode voltage clamp electrophysiology in Xenopus oocytes. The results suggest that the E protein forms an ion channel that is permeable to monovalent cations such as Na+ , Cs+ and K+ . The E current is nearly time- and voltage-independent when E protein is expressed in mammalian cells, and is modulated by changes of pH. At pH 6.0 and 7.4, the E protein current is activated, whereas at pH 8.0 and 9.0, the amplitude of E protein current is reduced, and in oocytes the inward E current fades at pH 9 in a time- and voltage-dependent manner. Using this directed targeting method and electrophysiological recordings, potential inhibitors of the E protein can be screened and subsequently investigated for antiviral activity against SARS-CoV-2 in vitro and possible efficacy in treating COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cátions , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio
13.
Cell Physiol Biochem ; 55(S3): 157-170, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34318654

RESUMO

BACKGROUND/AIMS: The Amyloid Precursor Protein (APP) is involved in the regulation of multiple cellular functions via protein-protein interactions and has been most studied with respect to Alzheimer's disease (AD). Abnormal processing of the single transmembrane-spanning C99 fragment of APP contributes to the formation of amyloid plaques, which are causally related to AD. Pathological C99 accumulation is thought to associate with early cognitive defects in AD. Here, unexpectedly, sequence analysis revealed that C99 exhibits 24% sequence identity with the KCNE1 voltage-gated potassium (Kv) channel ß subunit, comparable to the identity between KCNE1 and KCNE2-5 (21-30%). This suggested the possibility of C99 regulating Kv channels. METHODS: We quantified the effects of C99 on Kv channel function, using electrophysiological analysis of subunits expressed in Xenopus laevis oocytes, biochemical and immunofluorescence techniques. RESULTS: C99 isoform-selectively inhibited (by 30-80%) activity of a range of Kv channels. Among the KCNQ (Kv7) family, C99 isoform-selectively inhibited, shifted the voltage dependence and/or slowed activation of KCNQ2, KCNQ3, KCNQ2/3 and KCNQ5, with no effects on KCNQ1, KCNQ1-KCNE1 or KCNQ4. C99/APP co-localized with KCNQ2 and KCNQ3 in adult rat sciatic nerve nodes of Ranvier. Both C99 and full-length APP co-immunoprecipitated with KCNQ2 in vitro, yet unlike C99, APP only weakly affected KCNQ2/3 activity. Finally, C99 altered the effects on KCNQ2/3 function of inhibitors tetraethylammounium and XE991, but not openers retigabine and ICA27243. CONCLUSION: Our findings raise the possibility of C99 accumulation early in AD altering cellular excitability by modulating Kv channel activity.


Assuntos
Precursor de Proteína beta-Amiloide/farmacologia , Canais de Potássio KCNQ/genética , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ3/genética , Fragmentos de Peptídeos/farmacologia , Sequência de Aminoácidos , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Antracenos/farmacologia , Expressão Gênica , Humanos , Canais de Potássio KCNQ/metabolismo , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ3/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Oócitos/citologia , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Técnicas de Patch-Clamp , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Nós Neurofibrosos/efeitos dos fármacos , Nós Neurofibrosos/metabolismo , Ratos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Tetraetilamônio/farmacologia , Xenopus laevis
14.
Cell Physiol Biochem ; 55(S3): 46-64, 2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33667331

RESUMO

BACKGROUND/AIMS: Tea, produced from the evergreen Camellia sinensis, has reported therapeutic properties against multiple pathologies, including hypertension. Although some studies validate the health benefits of tea, few have investigated the molecular mechanisms of action. The KCNQ5 voltage-gated potassium channel contributes to vascular smooth muscle tone and neuronal M-current regulation. METHODS: We applied electrophysiology, myography, mass spectrometry and in silico docking to determine effects and their underlying molecular mechanisms of tea and its components on KCNQ channels and arterial tone. RESULTS: A 1% green tea extract (GTE) hyperpolarized cells by augmenting KCNQ5 activity >20-fold at resting potential; similar effects of black tea were inhibited by milk. In contrast, GTE had lesser effects on KCNQ2/Q3 and inhibited KCNQ1/E1. Tea polyphenols epicatechin gallate (ECG) and epigallocatechin-3-gallate (EGCG), but not epicatechin or epigallocatechin, isoform-selectively hyperpolarized KCNQ5 activation voltage dependence. In silico docking and mutagenesis revealed that activation by ECG requires KCNQ5-R212, at the voltage sensor foot. Strikingly, ECG and EGCG but not epicatechin KCNQ-dependently relaxed rat mesenteric arteries. CONCLUSION: KCNQ5 activation contributes to vasodilation by tea; ECG and EGCG are candidates for future anti-hypertensive drug development.


Assuntos
Catequina/análogos & derivados , Canais de Potássio KCNQ/química , Canal de Potássio KCNQ1/química , Artérias Mesentéricas/efeitos dos fármacos , Extratos Vegetais/farmacologia , Chá/química , Animais , Sítios de Ligação , Catequina/química , Catequina/farmacologia , Canais de Potássio KCNQ/agonistas , Canais de Potássio KCNQ/genética , Canais de Potássio KCNQ/metabolismo , Canal de Potássio KCNQ1/antagonistas & inibidores , Canal de Potássio KCNQ1/genética , Canal de Potássio KCNQ1/metabolismo , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Artérias Mesentéricas/fisiologia , Leite/química , Simulação de Acoplamento Molecular , Miografia , Oócitos/citologia , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Técnicas de Patch-Clamp , Extratos Vegetais/química , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratos , Ratos Wistar , Técnicas de Cultura de Tecidos , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia , Xenopus laevis
15.
Cardiovasc Diabetol ; 20(1): 199, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34607570

RESUMO

BACKGROUND: Empagliflozin is a selective sodium-glucose cotransporter 2 (SGLT2) inhibitor used to lower blood sugar in adults with type 2 diabetes. Empagliflozin also exerts cardioprotective effects independent from glucose control, but its benefits on arrhythmogenesis and sudden cardiac death are not known. The purpose of this study was to examine the effect of empagliflozin on myocardial ischemia/reperfusion-provoked cardiac arrhythmia and sudden cardiac death in vivo. METHODS: Male Sprague Dawley rats were randomly assigned to sham-operated, control or empagliflozin groups. All except for the sham-operated rats were subjected to 5-min left main coronary artery ligation followed by 20-min reperfusion. A standard limb lead II electrocardiogram was continuously measured throughout the experiment. Coronary artery reperfusion-induced ventricular arrhythmogenesis and empagliflozin therapy were evaluated. The hearts were used for protein phosphorylation analysis and immunohistological assessment. RESULTS: Empagliflozin did not alter baseline cardiac normal conduction activity. However, empagliflozin eliminated myocardial vulnerability to sudden cardiac death (from 69.2% mortality rate in the control group to 0% in the empagliflozin group) and reduced the susceptibility to reperfusion-induced arrhythmias post I/R injury. Empagliflozin increased phosphorylation of cardiac ERK1/2 after reperfusion injury. Furthermore, inhibition of ERK1/2 using U0126 abolished the anti-arrhythmic action of empagliflozin and ERK1/2 phosphorylation. CONCLUSIONS: Pretreatment with empagliflozin protects the heart from subsequent severe lethal ventricular arrhythmia induced by myocardial ischemia and reperfusion injury. These protective benefits may occur as a consequence of activation of the ERK1/2-dependent cell-survival signaling pathway in a glucose-independent manner.


Assuntos
Arritmias Cardíacas/prevenção & controle , Compostos Benzidrílicos/farmacologia , Morte Súbita Cardíaca/prevenção & controle , Glucosídeos/farmacologia , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Animais , Arritmias Cardíacas/enzimologia , Arritmias Cardíacas/patologia , Arritmias Cardíacas/fisiopatologia , Modelos Animais de Doenças , Frequência Cardíaca/efeitos dos fármacos , Masculino , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Fosforilação , Ratos Sprague-Dawley , Transdução de Sinais
16.
FASEB J ; 34(8): 10699-10719, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32584506

RESUMO

Heart failure (HF) is an increasing global health crisis, affecting 40 million people and causing 50% mortality within 5 years of diagnosis. A fuller understanding of the genetic and environmental factors underlying HF, and novel therapeutic approaches to address it, are urgently warranted. Here, we discovered that cardiac-specific germline deletion in mice of potassium channel ß subunit-encoding Kcne2 (Kcne2CS-/- ) causes dilated cardiomyopathy and terminal HF (median longevity, 28 weeks). Mice with global Kcne2 deletion (Kcne2Glo-/- ) exhibit multiple HF risk factors, yet, paradoxically survived over twice as long as Kcne2CS-/- mice. Global Kcne2 deletion, which inhibits gastric acid secretion, reduced the relative abundance of species within Bacteroidales, a bacterial order that positively correlates with increased lifetime risk of human cardiovascular disease. Strikingly, the proton-pump inhibitor omeprazole similarly altered the microbiome and delayed terminal HF in Kcne2CS-/- mice, increasing survival 10-fold at 44 weeks. Thus, genetic or pharmacologic induction of hypochlorhydria and decreased gut Bacteroidales species are associated with lifespan extension in a novel HF model.


Assuntos
Acloridria/genética , Acloridria/mortalidade , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/mortalidade , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Animais , Bacteroides/crescimento & desenvolvimento , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/mortalidade , Feminino , Ácido Gástrico/metabolismo , Microbioma Gastrointestinal/genética , Deleção de Genes , Coração/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Risco
17.
Arterioscler Thromb Vasc Biol ; 40(5): 1207-1219, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32188278

RESUMO

OBJECTIVE: Intravenous acetaminophen/paracetamol (APAP) is well documented to cause hypotension. Since the patients receiving intravenous APAP are usually critically ill, any severe hemodynamic changes, as with those associated with APAP, can be life-threatening. The mechanism underlying this dangerous iatrogenic effect of APAP was unknown. Approach and Results: Here, we show that intravenous APAP caused transient hypotension in rats, which was attenuated by the Kv7 channel blocker, linopirdine. APAP metabolite N-acetyl-p-benzoquinone imine caused vasodilatation of rat mesenteric arteries ex vivo. This vasodilatation was sensitive to linopirdine and also the calcitonin gene-related peptide antagonist, BIBN 4096. Further investigation revealed N-acetyl-p-benzoquinone imine stimulates calcitonin gene-related peptide release from perivascular nerves, causing a cAMP-dependent activation of Kv7 channels. We also show that N-acetyl-p-benzoquinone imine enhances Kv7.4 and Kv7.5 channels overexpressed in oocytes, suggesting that it can activate Kv7.4 and Kv7.5 channels directly, to elicit vasodilatation. CONCLUSIONS: Direct and indirect activation of Kv7 channels by the APAP metabolite N-acetyl-p-benzoquinone imine decreases arterial tone, which can lead to a drop in blood pressure. Our findings provide a molecular mechanism and potential preventive intervention for the clinical phenomenon of intravenous APAP-dependent transient hypotension.


Assuntos
Acetaminofen/toxicidade , Pressão Sanguínea/efeitos dos fármacos , Hipotensão/induzido quimicamente , Canais de Potássio KCNQ/agonistas , Artérias Mesentéricas/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Acetaminofen/metabolismo , Animais , Benzoquinonas , Hipotensão/metabolismo , Hipotensão/fisiopatologia , Iminas , Canais de Potássio KCNQ/genética , Canais de Potássio KCNQ/metabolismo , Masculino , Potenciais da Membrana , Artérias Mesentéricas/metabolismo , Artérias Mesentéricas/fisiopatologia , Ratos Wistar , Transdução de Sinais , Xenopus laevis
18.
Handb Exp Pharmacol ; 267: 445-480, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34247280

RESUMO

Potassium channels facilitate and regulate physiological processes as diverse as electrical signaling, ion, solute and hormone secretion, fluid homeostasis, hearing, pain sensation, muscular contraction, and the heartbeat. Potassium channels are each formed by either a tetramer or dimer of pore-forming α subunits that co-assemble to create a multimer with a K+-selective pore that in most cases is capable of functioning as a discrete unit to pass K+ ions across the cell membrane. The reality in vivo, however, is that the potassium channel α subunit multimers co-assemble with ancillary subunits to serve specific physiological functions. The ancillary subunits impart specific physiological properties that are often required for a particular activity in vivo; in addition, ancillary subunit interaction often alters the pharmacology of the resultant complex. In this chapter the modes of action of ancillary subunits on K+ channel physiology and pharmacology are described and categorized into various mechanistic classes.


Assuntos
Canais de Potássio de Abertura Dependente da Tensão da Membrana , Canais de Potássio
19.
J Pharmacol Exp Ther ; 373(3): 391-401, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32217768

RESUMO

Loss of function of voltage-gated potassium (Kv) channels is linked to a range of lethal or debilitating channelopathies. New pharmacological approaches are warranted to isoform-selectively activate specific Kv channels. One example is KCNA1 Potassium Voltage-Gated Channel Subfamily A Member 1 (KCNA1) (Kv1.1), an archetypal Shaker-type Kv channel, in which loss-of-function mutations cause episodic ataxia type 1 (EA1). EA1 causes constant myokomia and episodic bouts of ataxia and may associate with epilepsy and other disorders. We previously found that the inhibitory neurotransmitter γ-aminobutyric acid and modified versions of glycine directly activate Kv channels within the KCNQ subfamily, a characteristic favored by strong negative electrostatic surface potential near the neurotransmitter carbonyl group. Here, we report that adjusting the number and positioning of fluorine atoms within the fluorophenyl ring of glycine derivatives produces isoform-selective KCNA1 channel openers that are inactive against KCNQ2/3 channels, or even KCNA2, the closest relative of KCNA1. The findings refine our understanding of the molecular basis for KCNQ versus KCNA1 activation and isoform selectivity and constitute, to our knowledge, the first reported isoform-selective KCNA1 opener. SIGNIFICANCE STATEMENT: Inherited loss-of-function gene sequence variants in KCNA1, which encodes the KCNA1 (Kv1.1) voltage-gated potassium channel, cause episodic ataxia type 1 (EA1), a movement disorder also linked to epilepsy and developmental delay. We have discovered several isoform-specific KCNA1-activating small molecules, addressing a notable gap in the field and providing possible lead compounds and a novel chemical space for the development of potential future therapeutic drugs for EA1.


Assuntos
Glicina/genética , Canal de Potássio Kv1.1/genética , Isoformas de Proteínas/genética , Animais , Ataxia/genética , Epilepsia/genética , Humanos , Mutação/genética , Mioquimia/genética , Xenopus laevis/genética
20.
J Pharmacol Exp Ther ; 372(2): 148-156, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31757819

RESUMO

Ketogenic diets are effective therapies for refractory epilepsy, yet the underlying mechanisms are incompletely understood. The anticonvulsant efficacy of ketogenic diets correlates positively to the serum concentration of ß-hydroxybutyrate (BHB), the primary ketone body generated by ketosis. Voltage-gated potassium channels generated by KCNQ2-5 subunits, especially KCNQ2/3 heteromers, generate the M-current, a therapeutic target for synthetic anticonvulsants. Here, we report that BHB directly activates KCNQ2/3 channels (EC50 = 0.7 µM), via a highly conserved S5 tryptophan (W265) on KCNQ3. BHB was also acutely effective as an anticonvulsant in the pentylene tetrazole (PTZ) seizure assay in mice. Strikingly, coadministration of γ-amino-ß-hydroxybutyric acid, a high-affinity KCNQ2/3 partial agonist that also acts via KCNQ3-W265, similarly reduced the efficacy of BHB in KCNQ2/3 channel activation in vitro and in the PTZ seizure assay in vivo. Our results uncover a novel, unexpected molecular basis for anticonvulsant effects of the major ketone body induced by ketosis. SIGNIFICANCE STATEMENT: Ketogenic diets are used to treat refractory epilepsy but the therapeutic mechanism is not fully understood. Here, we show that clinically relevant concentrations of ß-hydroxybutyrate, the primary ketone body generated during ketogenesis, activates KCNQ2/3 potassium channels by binding to a specific site on KCNQ3, an effect known to reduce neuronal excitability. We provide evidence using a mouse chemoconvulsant model that KCNQ2/3 activation contributes to the antiepileptic action of ß-hydroxybutyrate.


Assuntos
Ácido 3-Hidroxibutírico/farmacologia , Anticonvulsivantes/farmacologia , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ3/metabolismo , Ácido 3-Hidroxibutírico/metabolismo , Animais , Anticonvulsivantes/metabolismo , Sítios de Ligação , Quimioterapia Combinada , Eletrofisiologia , Humanos , Cetose/metabolismo , Camundongos , Modelos Animais , Simulação de Acoplamento Molecular , Técnicas de Patch-Clamp , Pentilenotetrazol/farmacologia , Ligação Proteica , Conformação Proteica , Transdução de Sinais , Triptofano/metabolismo , Xenopus laevis , Ácido gama-Aminobutírico/análogos & derivados , Ácido gama-Aminobutírico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA