Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Mol Sci ; 24(11)2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37298312

RESUMO

Sirtuin isoform 2 (SIRT2) is one of the seven sirtuin isoforms present in humans, being classified as class III histone deacetylases (HDACs). Based on the high sequence similarity among SIRTs, the identification of isoform selective modulators represents a challenging task, especially for the high conservation observed in the catalytic site. Efforts in rationalizing selectivity based on key residues belonging to the SIRT2 enzyme were accompanied in 2015 by the publication of the first X-ray crystallographic structure of the potent and selective SIRT2 inhibitor SirReal2. The subsequent studies led to different experimental data regarding this protein in complex with further different chemo-types as SIRT2 inhibitors. Herein, we reported preliminary Structure-Based Virtual Screening (SBVS) studies using a commercially available library of compounds to identify novel scaffolds for the design of new SIRT2 inhibitors. Biochemical assays involving five selected compounds allowed us to highlight the most effective chemical features supporting the observed SIRT2 inhibitory ability. This information guided the following in silico evaluation and in vitro testing of further compounds from in-house libraries of pyrazolo-pyrimidine derivatives towards novel SIRT2 inhibitors (1-5). The final results indicated the effectiveness of this scaffold for the design of promising and selective SIRT2 inhibitors, featuring the highest inhibition among the tested compounds, and validating the applied strategy.


Assuntos
Sirtuína 2 , Sirtuína 2/antagonistas & inibidores , Sirtuína 2/química , Domínio Catalítico , Bibliotecas de Moléculas Pequenas , Conformação Proteica , Simulação de Acoplamento Molecular
2.
Molecules ; 27(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36080416

RESUMO

Sirtuins are NAD+-dependent deac(et)ylases with different subcellular localization. The sirtuins' family is composed of seven members, named SIRT-1 to SIRT-7. Their substrates include histones and also an increasing number of different proteins. Sirtuins regulate a wide range of different processes, ranging from transcription to metabolism to genome stability. Thus, their dysregulation has been related to the pathogenesis of different diseases. In this review, we discussed the pharmacological approaches based on sirtuins' modulators (both inhibitors and activators) that have been attempted in in vitro and/or in in vivo experimental settings, to highlight the therapeutic potential of targeting one/more specific sirtuin isoform(s) in cancer, neurodegenerative disorders and type 2 diabetes. Extensive research has already been performed to identify SIRT-1 and -2 modulators, while compounds targeting the other sirtuins have been less studied so far. Beside sections dedicated to each sirtuin, in the present review we also included sections dedicated to pan-sirtuins' and to parasitic sirtuins' modulators. A special focus is dedicated to the sirtuins' modulators identified by the use of virtual screening.


Assuntos
Diabetes Mellitus Tipo 2 , Neoplasias , Doenças Neurodegenerativas , Sirtuínas , Histonas/metabolismo , Humanos , Neoplasias/tratamento farmacológico
3.
J Neuroinflammation ; 17(1): 228, 2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32736564

RESUMO

BACKGROUND: Experimental autoimmune encephalomyelitis (EAE) is the most common animal model of multiple sclerosis (MS), a neuroinflammatory and demyelinating disease characterized by multifocal perivascular infiltrates of immune cells. Although EAE is predominantly considered a T helper 1-driven autoimmune disease, mounting evidence suggests that activated dendritic cells (DC), which are the bridge between innate and adaptive immunity, also contribute to its pathogenesis. Sirtuin 6 (SIRT6), a NAD+-dependent deacetylase involved in genome maintenance and in metabolic homeostasis, regulates DC activation, and its pharmacological inhibition could, therefore, play a role in EAE development. METHODS: EAE was induced in female C57bl/6 mice by MOG35-55 injection. The effect of treatment with a small compound SIRT6 inhibitor, administered according to therapeutic and preventive protocols, was assessed by evaluating the clinical EAE score. SIRT6 inhibition was confirmed by Western blot analysis by assessing the acetylation of histone 3 lysine 9, a known SIRT6 substrate. The expression of DC activation and migration markers was evaluated by FACS in mouse lymph nodes. In addition, the expression of inflammatory and anti-inflammatory cytokines in the spinal cord were assessed by qPCR. T cell infiltration in spinal cords was evaluated by immunofluorescence imaging. The effect of Sirt6 inhibition on the migration of resting and activated bone marrow-derived dendritic cells was investigated in in vitro chemotaxis assays. RESULTS: Preventive pharmacological Sirt6 inhibition effectively delayed EAE disease onset through a novel regulatory mechanism, i.e., by reducing the representation of CXCR4-positive and of CXCR4/CCR7-double-positive DC in lymph nodes. The delay in EAE onset correlated with the early downregulation in the expression of CD40 on activated lymph node DC, with increased level of the anti-inflammatory cytokine IL-10, and with a reduced encephalitogenic T cell infiltration in the central nervous system. Consistent with the in vivo data, in vitro pharmacological Sirt6 inhibition in LPS-stimulated, bone marrow-derived DC reduced CCL19/CCL21- and SDF-1-induced DC migration. CONCLUSIONS: Our findings indicate the ability of Sirt6 inhibition to impair DC migration, to downregulate pathogenic T cell inflammatory responses and to delay EAE onset. Therefore, Sirt6 might represent a valuable target for developing novel therapeutic agents for the treatment of early stages of MS, or of other autoimmune disorders.


Assuntos
Movimento Celular/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Encefalomielite Autoimune Experimental/tratamento farmacológico , Quinazolinonas/uso terapêutico , Sirtuínas/antagonistas & inibidores , Sulfonamidas/uso terapêutico , Animais , Citocinas/metabolismo , Células Dendríticas/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Feminino , Camundongos , Quinazolinonas/farmacologia , Sulfonamidas/farmacologia , Células Th1/metabolismo , Células Th1/patologia , Células Th17/metabolismo , Células Th17/patologia
4.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37765125

RESUMO

Recently, the development of sirtuin small molecule inhibitors (SIRTIs) has been gaining attention for the treatment of different cancer types, but also to contrast neurodegenerative disease, diabetes, and autoimmune syndromes. In the search for SIRT2 modulators, the availability of several X-crystallographic data regarding SIRT2-ligand complexes has allowed for setting up a structure-based study, which is herein presented. A set of 116 SIRT2 inhibitors featuring different chemical structures has been collected from the literature and used for molecular docking studies involving 4RMG and 5MAT PDB codes. The information found highlights key contacts with the SIRT2 binding pocket such as Van der Waals and π-π stacking with Tyr104, Phe119, Phe234, and Phe235 in order to achieve high inhibitory ability values. Following the preliminary virtual screening studies, a small in-house library of compounds (1a-7a), previously investigated as putative HSP70 inhibitors, was described to guide the search for dual-acting HSP70/SIRT2 inhibitors. Biological and enzymatic assays validated the whole procedure. Compounds 2a and 7a were found to be the most promising derivatives herein proposed.

5.
Biomed Pharmacother ; 166: 115326, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37611438

RESUMO

Sirtuin 6 (SIRT6) has a critical role in cutaneous Squamous Cell Carcinoma (cSCC): SIRT6 silencing in skin SCC cells has pro-differentiating effects and SIRT6 deletion abrogated DMBA-TPA-induced skin tumorigenesis in mice. On the other hand, SIRT6 acts as tumor suppressor in SCC by enhancing glycolysis in tumor propagating cells. Herein, pharmacological modulation of SIRT6 deacetylase activity was investigated in cSCC, with S6 (inhibitor) or MDL-800 (activator). In cSCC cells, S6 recreated the pro-differentiating effects of SIRT6 silencing, as the levels of Keratin 1, Keratin 10 and Loricrin were upregulated compared to controls. Next, the effects of SIRT6 pharmacological modulation were evaluated in a DMBA-TPA-induced skin cancer mouse model. Mice treated with the inhibitor S6 in a preventive approach, i.e. at the beginning of the promotion stage, presented reduced number and size of papillomas, compared to the controls. The epidermal hyperproliferation marker Keratin 6 and the cSCC marker Keratin 8 were less abundant when SIRT6 was inhibited. In S6-treated lesions, the Epithelial-Mesenchymal Transition (EMT) markers Zeb1 and Vimentin were less expressed compared to untreated lesions. In a therapeutic approach, i.e. treatment starting after papilloma appearance, the S6 group presented reduced papillomas (number and size), whereas MDL-800-treated mice displayed an opposite trend. In S6-treated lesions, Keratin 6 and Keratin 8 were less expressed, EMT was less advanced, with a higher E-cadherin/Vimentin ratio, indicating a delayed carcinogenesis when SIRT6 was inhibited. Our results confirm that SIRT6 plays a role in skin carcinogenesis and suggest SIRT6 pharmacological inhibition as a promising strategy in cSCC.


Assuntos
Carcinoma de Células Escamosas , Papiloma , Sirtuínas , Neoplasias Cutâneas , Animais , Camundongos , Neoplasias Cutâneas/tratamento farmacológico , Carcinoma de Células Escamosas/tratamento farmacológico , Queratina-8 , Vimentina , Queratina-6 , Carcinogênese
6.
Nat Commun ; 14(1): 1244, 2023 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-36871014

RESUMO

The Thyroid Hormone (TH) activating enzyme, type 2 Deiodinase (D2), is functionally required to elevate the TH concentration during cancer progression to advanced stages. However, the mechanisms regulating D2 expression in cancer still remain poorly understood. Here, we show that the cell stress sensor and tumor suppressor p53 silences D2 expression, thereby lowering the intracellular THs availability. Conversely, even partial loss of p53 elevates D2/TH resulting in stimulation and increased fitness of tumor cells by boosting a significant transcriptional program leading to modulation of genes involved in DNA damage and repair and redox signaling. In vivo genetic deletion of D2 significantly reduces cancer progression and suggests that targeting THs may represent a general tool reducing invasiveness in p53-mutated neoplasms.


Assuntos
Iodeto Peroxidase , Proteína Supressora de Tumor p53 , Dano ao DNA , Exercício Físico , Terapia Genética
7.
Nat Commun ; 13(1): 5415, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109503

RESUMO

Chronic activation of stress hormones such as glucocorticoids leads to skeletal muscle wasting in mammals. However, the molecular events that mediate glucocorticoid-induced muscle wasting are not well understood. Here, we show that SIRT6, a chromatin-associated deacetylase indirectly regulates glucocorticoid-induced muscle wasting by modulating IGF/PI3K/AKT signaling. Our results show that SIRT6 levels are increased during glucocorticoid-induced reduction of myotube size and during skeletal muscle atrophy in mice. Notably, overexpression of SIRT6 spontaneously decreases the size of primary myotubes in a cell-autonomous manner. On the other hand, SIRT6 depletion increases the diameter of myotubes and protects them against glucocorticoid-induced reduction in myotube size, which is associated with enhanced protein synthesis and repression of atrogenes. In line with this, we find that muscle-specific SIRT6 deficient mice are resistant to glucocorticoid-induced muscle wasting. Mechanistically, we find that SIRT6 deficiency hyperactivates IGF/PI3K/AKT signaling through c-Jun transcription factor-mediated increase in IGF2 expression. The increased activation, in turn, leads to nuclear exclusion and transcriptional repression of the FoxO transcription factor, a key activator of muscle atrophy. Further, we find that pharmacological inhibition of SIRT6 protects against glucocorticoid-induced muscle wasting in mice by regulating IGF/PI3K/AKT signaling implicating the role of SIRT6 in glucocorticoid-induced muscle atrophy.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Sirtuínas , Animais , Cromatina , Glucocorticoides/farmacologia , Mamíferos/metabolismo , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/metabolismo , Atrofia Muscular/prevenção & controle , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sirtuínas/genética , Sirtuínas/metabolismo , Somatomedinas/metabolismo , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA